• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • Tagged with
  • 77
  • 77
  • 75
  • 75
  • 13
  • 13
  • 13
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Separation of Proteins with Capillary Electrophoresis in Coated Capillaries with and without Electroosmosis : Studies on Zone Broadening and Analytical Performances

Mohabbati, Sheila January 2006 (has links)
Proteins have such structural features that they may interact with different types of surfaces by all possible forces, i.e., electrostatic, hydrogen bonding, hydrophobic. In this thesis two different types of coatings for fused silica capillaries aimed to eliminate such interactions have been studied. The first is a covalent, electroosmosis-free coating with polyacrylamide (PAA) and the second involves a non-covalent coating with the quaternary ammonium compound N, N-didodecyl –N, N- dimethylammonium bromide (DDAB) with a strong anodic electroosmosis. Optimal conditions regarding efficiency and resolution were established by variations of the composition and ionic strengths of buffers at pH below the isoelectric point of the proteins. To achieve high efficiency and resolution the choice of buffer constituents was extremely important. The PAA coating was very stable at neutral and acidic conditions. Ammonium acetate (0.12 M) and ammonium hydroxyacetate (0.15 M) both at pH 4 provided the best separations with plate numbers up to 1 700 000 plate/m that is among the highest reported in the literature. Capillaries coated with DDAB were stable enough to, without recoating, permit consecutive separations of the proteins up to 9 hours (90 injections). High apparent efficiencies (over 1 million plates/m) were achieved with ammonium acetate (0.07 M), ammonium hydroxyacetate (0.08 M) and sodium phosphate (0.1 M) at pH 4. Zone broadening was studied by determination of the variance contributions from all main parameters. Significant variances were contributions from longitudinal diffusion, capillary curvature, injection plug, detector time response and detector slit width while other variances, e.g., variances for Joule heat and vertical sedimentation were negligible. The remaining undetermined variance may have its origin in all types of relatively slow interactions including adsorption onto the capillary surfaces and protein-buffer component interactions. The results indicate that the latter is the main cause to zone broadening in protein separations.
72

Interaction between Crosslinked Polyelectrolyte Gels and Oppositely Charged Surfactants

Nilsson, Peter January 2007 (has links)
The interactions between anionic, crosslinked gels and cationic surfactants have been investigated. When exposed to oppositely charged surfactant, the gel collapses into a dense complex of polyion and micelles. During deswelling, the gel phase separates into a micelle-rich, collapsed surface phase, and a swollen, micelle-free core, both still part of the same network. As more surfactant is absorbed, the surface phase grows at the expense of the core, until the entire gel has collapsed. Polyacrylate (PA) gels with dodecyl- (C12TAB), and cetyltrimethylammonium bromide (C16TAB), as well as hyaluronate gels with cetylpyridinium chloride, have been studied. Kinetic experiments have been performed on macro- as well as microgels, using micromanipulator assisted light microscopy for the latter. A surfactant diffusion controlled deswelling model has been employed to describe the deswelling. The deswelling kinetics of PA microgels have been shown to be controlled by surfactant diffusion through the stagnant layer surrounding the gel, as the surface phase is relatively thin for the major part of the deswelling. For macroscopic PA gels the surface phase is thicker, and the kinetics with C12TAB were therefore also influenced by diffusion through the surface phase, while for C16TAB they were dominated by it. Relevant parameters have also been determined using equilibrium experiments. An irregular, balloon-forming deswelling pattern, mainly found for macrogels, as well as unexpectedly long lag times and slow deswelling for microgels, are reported and discussed. The microstructure of fully collapsed PA/C12TAB complexes has been studied using small-angle X-ray scattering. A cubic Pm3n structure was found at low salt concentration, which melted into a disordered micellar phase as the salt concentration was increased. Further increasing the salt concentration dissolved the micelles, resulting in no ordering.
73

Evaluation of a Miniaturized Rotating Disk Apparatus for In Vitro Dissolution Rate Measurements in Aqueous Media : Correlation of In Vitro Dissolution Rate with Apparent Solubility

Persson, Anita M. January 2010 (has links)
The general aim of this thesis was to evaluate a newly designed and constructed miniaturized rotating disk apparatus for in vitro dissolution rate measurements of different drug substances from all of the classes in the Biopharmaceutical Classification System (BCS). The new equipment is based on a low volume flow-through cell of Plexiglas, a gold plated magnetic bar and a special designed press. The disk of drug substance (approx. 5 mg) is placed eccentrically in the bar. Rotation speeds were set with a graded magnetic stirrer. An external HPLC pump delivered a continuous flow of aqueous medium to the flow-through cell during dissolution testing. A reversed phase high-performance liquid chromatography system using diode array detection (RP-HPLC-DAD) was coupled online to the new equipment. The injections from the miniaturized rotating disk outlet into the quantifying HPLC system were controlled by a six-position switching valve. The injection volumes from the valve and the autosampler, used for the external standards, were statistically evaluated to match each other volumetrically. No analyses were longer than three minutes, using isocratic mode. A traditional USP rotating disk apparatus was used as a reference system and the two instruments were shown to be statistically dissimilar in the numerical dissolution rate values probably due to different hydrodynamics, but had approximately the same precision/repeatability. When correlating the logarithmic values of the in vitro dissolution rate (G) with the apparent solubility (S), using shake-flask methodology in the solubility studies, the two apparatuses gave the same correlation patterns. Further correlation studies were done where the media components were altered by the use of different buffer species or additives into the buffers, such as inorganic salts. Chemometric tools, e.g. orthogonal partial least squares (OPLS), were used to better evaluate the most influential factors for G and S in different media. The most significant factor for a model basic drug substance (terfenadine) was pH, followed by the ionic strength (I) and added sodium chloride in one of the media. However, the surfactants in the Fasted State Simulated Intestinal Fluid (FaSSIF-V2) were found to be insignificant for G and S in this study (using a 95% confidence interval). The new miniaturized apparatus is a promising prototype for in vitro dissolution rate measurements both for early screening purposes and in dissolution testing during drug development, but needs further instrumental improvements.
74

Discovery of Small Peptides and Peptidomimetics Targeting the Substance P 1-7 Binding Site : Focus on Design, Synthesis, Structure-Activity Relationships and Drug-Like Properties

Fransson, Rebecca January 2011 (has links)
Biologically active peptides are important for many physiological functions in the human body and therefore serve as interesting starting points in drug discovery processes. In this work the neuropeptide substance P 1–7 (SP1–7, H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH), which has been demonstrated to reduce neuropathic pain and attenuate opioid withdrawal symptoms in animal models, has been addressed in a medicinal chemistry program with the overall aim of transforming this bioactive peptide into more drug-like compounds. Specific binding sites for this neuropeptide have been detected in the brain and the spinal cord. Interestingly, the smaller neuropeptide endomorphin-2 (EM-2, H-Tyr-Pro-Phe-Phe-NH2) also interacts with these binding sites, although 10-fold less efficient. In this work the structure–activity relationship of SP1–7 and EM-2, regarding their affinity to the SP1–7 binding site was elucidated using alanine scans, truncation, and terminal modifications. The C-terminal part of both peptides, and especially the C-terminal phenylalanine, was crucial for binding affinity. Moreover, the C-terminal functional group should preferably be a primary amide. The truncation studies finally resulted in the remarkable discovery of H-Phe-Phe-NH2 as an equally good binder as the heptapeptide SP1–7. This dipeptide amide served as a lead compound for further studies. In order to improve the drug-like properties and to find a plausible bioactive conformation, a set of rigidified and methylated dipeptides of different stereochemistry, and analogs with reduced peptide character, were synthesized and evaluated regarding binding, metabolic stability and absorption. Small SP1–7 analogs with retained affinity and substantially improved permeability and metabolic stability were identified. Beside peptide chemistry the synthetic work included the development of a fast and convenient microwave-assisted protocol for direct arylation of imidazoles. Furthermore, microwave-assisted aminocarbonylation using Mo(CO)6 as a solid carbon monoxide source was investigated in the synthesis of MAP amides and for coupling of imidazoles with amino acids. In a future perspective the present findings, together with the fact that some of the SP1–7 analogs discovered herein have been shown to reproduce the biological effects of SP1-7 in animal studies related to neuropathic pain and opioid dependence, can ultimately have an impact on drug discovery in these two areas.
75

Chemical Derivatization in Combination with Liquid Chromatography Tandem Mass Spectrometry for Detection and Structural Investigation of Glucuronides

Lampinen Salomonsson, Matilda January 2008 (has links)
<p>This thesis presents novel approaches for structural investigation of glucuronides using chemical derivatization in combination with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS<sup>n</sup>).</p><p>Today, LC-ESI-MS<sup>n</sup> is the dominant technique for quantitative as well as qualitative analyses of metabolites, due to its high sensitivity and selectivity. However, for compounds without an easily ionizable group, e.g., steroids, the sensitivity is limited. In the work presented in this thesis, a derivatization procedure forming a basic oxime significantly increased the detection sensitivity for the altrenogest glucuronide. </p><p>Furthermore, in structural evaluations of glucuronides, the limitation of LC-MS<sup>n</sup> becomes evident due to the initial neutral loss of 176 u, i.e. monodehydrated glucuronic acid, which often makes it impossible to elucidate the structures of the conjugates. To solve this problem, the main part of the work described in this thesis was devoted to chemical derivatization as a means of facilitating the determination of the site of conjugation. </p><p>For the first time, the isomeric estriol glucuronides were evaluated using a combination of three reagents 2-chloro-1-methylpyridinium iodide (CMPI), 1-ethyl-3-(3-dimethyl- aminopropyl)-carbodiimide (EDC), and 2-picolylamine (PA). Interestingly, the derivatization gave a selective fragmentation pattern leading to differentiation of the isomers. </p><p>Another derivatization reagent, 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC), was also tested for the first time in structural investigations. The isomeric glucuronides of morphine, formoterol, and hydroxypropranolol were evaluated. They can all be conjugated in aliphatic as well as aromatic positions. DMISC was proven to be useful in two ways. Firstly, the morphine and formoterol glucuronides that contained a free phenol could be differentiated from those that were conjugated in the aromatic position based on different reactivity. Secondly, for the aromatic <i>O</i>-glucuronide of 4’-hydroxypropranolol, DMISC was proven to react with the amine. This product gave a different fragmentation pattern compared to the corresponding derivative of the aliphatic glucuronide. </p>
76

Chemical Derivatization in Combination with Liquid Chromatography Tandem Mass Spectrometry for Detection and Structural Investigation of Glucuronides

Lampinen Salomonsson, Matilda January 2008 (has links)
This thesis presents novel approaches for structural investigation of glucuronides using chemical derivatization in combination with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MSn). Today, LC-ESI-MSn is the dominant technique for quantitative as well as qualitative analyses of metabolites, due to its high sensitivity and selectivity. However, for compounds without an easily ionizable group, e.g., steroids, the sensitivity is limited. In the work presented in this thesis, a derivatization procedure forming a basic oxime significantly increased the detection sensitivity for the altrenogest glucuronide. Furthermore, in structural evaluations of glucuronides, the limitation of LC-MSn becomes evident due to the initial neutral loss of 176 u, i.e. monodehydrated glucuronic acid, which often makes it impossible to elucidate the structures of the conjugates. To solve this problem, the main part of the work described in this thesis was devoted to chemical derivatization as a means of facilitating the determination of the site of conjugation. For the first time, the isomeric estriol glucuronides were evaluated using a combination of three reagents 2-chloro-1-methylpyridinium iodide (CMPI), 1-ethyl-3-(3-dimethyl- aminopropyl)-carbodiimide (EDC), and 2-picolylamine (PA). Interestingly, the derivatization gave a selective fragmentation pattern leading to differentiation of the isomers. Another derivatization reagent, 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC), was also tested for the first time in structural investigations. The isomeric glucuronides of morphine, formoterol, and hydroxypropranolol were evaluated. They can all be conjugated in aliphatic as well as aromatic positions. DMISC was proven to be useful in two ways. Firstly, the morphine and formoterol glucuronides that contained a free phenol could be differentiated from those that were conjugated in the aromatic position based on different reactivity. Secondly, for the aromatic O-glucuronide of 4’-hydroxypropranolol, DMISC was proven to react with the amine. This product gave a different fragmentation pattern compared to the corresponding derivative of the aliphatic glucuronide.
77

Following the mevalonate pathway to bone heal alley

Skoglund, Björn January 2007 (has links)
The mevalonate pathway is an important biosynthetic pathway, found in all cells of virtually all known pro- as well as eukaryotic organisms. This thesis is an investigation into the use of two drugs, originally developed for different applications, but both affecting the mevalonate pathway, in to models of fracture repair. Using two different rodent models of fracture repair, a commonly used cholesterol lowering drug (statin) and two drugs used to treat osteoporosis (bisphosphonate) were applied both systemically as well as locally in order to enhance fracture repair. Papers I and II investigate the potential of simvastatin to improve the healing of femoral fractures in mice. Papers III and IV explore the use of two bisphosphonates to improve early fixation of stainless steel screws into rat bone. The statin simvastatin lead to an increased strength of the healing cellus. The application of bisphosphonates increased early screw fixation. It seems clear that both drugs have uses in orthopaedic applications. One interesting avenue of further research would be to combine the two classes of drugs and see if we can get the benefits while at the same time diminishing the drawbacks.

Page generated in 0.0661 seconds