Spelling suggestions: "subject:"farnesyltransferase"" "subject:"farnesyltansferase""
1 |
Kombinatorische Festphasensynthese und Molecular-modelling-Studien von Inhibitoren und Aktivatoren Signal-transduzierender EnzymeKissau, Lars. Unknown Date (has links)
Dortmund, Univ., Diss., 2002. / Computerdatei im Fernzugriff.
|
2 |
Kombinatorische Festphasensynthese und Molecular-modelling-Studien von Inhibitoren und Aktivatoren Signal-transduzierender EnzymeKissau, Lars. Unknown Date (has links)
Dortmund, Univ., Diss., 2002. / Computerdatei im Fernzugriff.
|
3 |
Kombinatorische Festphasensynthese von Analoga des Farnesyltransferase-Inhibitors Pepticinnamin E und deren biologische EvaluierungThutewohl, Michael. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Dortmund.
|
4 |
Recent Advances in the Study of Prenylated ProteinsSinensky, Michael 10 April 2000 (has links)
Post-translational modification of proteins with isoprenoids was first recognized as a general phenomenon in 1984. In recent years, our understanding, including mechanistic studies, of the enzymatic reactions associated with these modifications and their physiological functions has increased dramatically. Of particular functional interest is the role of prenylation in facilitating protein-protein interactions and membrane-associated protein trafficking. The loss of proper localization of Ras proteins when their farnesylation is inhibited has also permitted a new target for anti-malignancy pharmaceuticals. Recent advances in the enzymology and function of protein prenylation are reviewed in this article.
|
5 |
Characterization Of Protein Prenyltransferases And Protein Prenylation In Plasmodium FalciparumDaSilva, Thiago Gaspar 01 January 2004 (has links)
Malaria kills at least one million people each year, mostly children - a death every 30 seconds. Almost one half of the world population is at risk from malaria. Antimalarial drugs are the only means for the treatment of about 500 million annual global malaria cases. Because of prevalent drug-resistance it is extremely urgent to identify new drug targets. Many proteins involved in eukaryotic signal transduction and cell cycle progression undergo post-translational lipid modification by a prenyl group. Protein prenyltransferases, which catalyze the post-translational prenyl modification, have been established as a target for anticancer therapy. Research done in our laboratory has demonstrated recently that prenyl modification of proteins could be a novel target for the development of antimalarial drugs.The goal of this study is to understand the molecular mechanism of protein prenylation in Plasmodium. The key to use of prenyltransferase inhibitors for the pharmacological intervention is a thorough understanding of the in vivo prenylation pathways in the malaria parasite. Knowledge of the physiological functions of the cellular protein substrates of malarial prenyltransferases is an important first step in the elucidation of the mechanism of antimalarial action of inhibitors of protein prenylation. The research described in this thesis revealed the evidence for the existence of farnesylated and geranylgeranylated malaria parasite proteins. The study shows that the dynamics of protein prenylation changes with the intraerythrocytic development cycle of the parasite. We detected that prenylated proteins in the 50 kDa range were mostly farnesylated and that the proteins in the 22-25 kDa range were mostly geranylgeranylated. The prenylation of P. falciparum proteins is inhibited by prenyltransferase inhibitors. We have also demonstrated unique features of protein prenylation in P. falciparum compared to the human host such as farnesylation of proteins are sensitive to inhibition by geranylgeranyltransferase inhibitors.. In-silico search of the malarial genome sequence identified potential protein prenyltransferase substrates. One of these substrates is a SNARE protein Ykt6 homologue. The malarial Ykt6 was recombinantly expressed and subjected to an in-vitro prenylation assay. We showed that the recombinant Ykt6 was indeed a substrate for the malarial prenyltransferase.
|
6 |
The Role of Farnesyltransferase β-subunit in Neuronal Polarity in Caenorhabditis ElegansCarr, David, A. 07 February 2013 (has links)
Little is known about the molecular components and interactions of the planar cell polarity pathway that regulate neuronal polarity. This study uses a prkl-1 induced backwards locomotion defect as an array to perform a prkl-1 suppressor screen in C. elegans looking for new components of the planar cell polarity pathway involved in the neuronal polarization of VC4 and VC5. The screen discovered twelve new alleles of vang-1, one new allele of fntb-1 and five new mutations in unknown polarity genes. fntb-1 encodes for the worm ortholog of Farnesyltransferase β-subunit and is important for neuronal polarization. Acting cell and non-cell autonomously, fntb-1 regulates the function and localization of prkl-1 through the recognition of a CAAX motif. Therefore, fntb-1 modifies prkl-1 to regulate the neuronal polarity of VC4 and VC5.
|
7 |
Regulation of transcription and analysis of drug targets in lymphoma and myeloma cellsBolick, Sophia C. E 01 June 2006 (has links)
Hematological malignancies, such as lymphomas and myelomas, have low cure rates or remain refractory to treatment, although advances have been made in treatment regimens for these patients. Questions still remain as to what is occurring in these cells on a molecular level, specifically at the level of gene transcription. The positive regulatory domain I binding factor 1 (PRDI-BF1) has been shown to directly repress genes required for cell proliferation and maintenance of the B cell phenotype, however very little is known as to its regulation. The first study presented in this dissertation demonstrates regulation of the PRDM1 gene occurs primarily at the level of transcription in B cell receptor (BCR)-stimulated lymphoma cells and myeloma cells. It also demonstrates PU.1 binding is involved in BCR-mediated activation of lymphoma cells. Most importantly, this study presents evidence of a promoter poised and primed for activation in lymphoma cells. These studies lay the groundwork for the second study which examines modulation of PRDM1 expression in lymphoma cells by chemotherapeutic agents. Induction of PRDI-BF1 in lymphoma cells negative for PRDM1 gene expression correlates with increased apoptosis, which has important therapeutic implications for treatment of lymphomas. One common problem that arises in treatment of cancer patients is the eventual emergence of a drug resistant population of cells. Identifying specific drug targets and whether they confer drug resistance is an important area of study, which is the focus of the third study presented in this dissertation. It demonstrates the response of myeloma cells to treatment with the farnesyltransferase inhibitor (FTI)-277 and examines whether known mechanisms of drug resistance in these cells are responsible for cross-resistance to FTI-277.
|
8 |
The Role of Farnesyltransferase β-subunit in Neuronal Polarity in Caenorhabditis ElegansCarr, David, A. 07 February 2013 (has links)
Little is known about the molecular components and interactions of the planar cell polarity pathway that regulate neuronal polarity. This study uses a prkl-1 induced backwards locomotion defect as an array to perform a prkl-1 suppressor screen in C. elegans looking for new components of the planar cell polarity pathway involved in the neuronal polarization of VC4 and VC5. The screen discovered twelve new alleles of vang-1, one new allele of fntb-1 and five new mutations in unknown polarity genes. fntb-1 encodes for the worm ortholog of Farnesyltransferase β-subunit and is important for neuronal polarization. Acting cell and non-cell autonomously, fntb-1 regulates the function and localization of prkl-1 through the recognition of a CAAX motif. Therefore, fntb-1 modifies prkl-1 to regulate the neuronal polarity of VC4 and VC5.
|
9 |
Kombinatorische Festphasensynthese und Molecular-modelling-Studien von Inhibitoren und Aktivatoren Signal-transduzierender EnzymeKissau, Lars. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Dortmund.
|
10 |
The Role of Farnesyltransferase β-subunit in Neuronal Polarity in Caenorhabditis ElegansCarr, David, A. January 2013 (has links)
Little is known about the molecular components and interactions of the planar cell polarity pathway that regulate neuronal polarity. This study uses a prkl-1 induced backwards locomotion defect as an array to perform a prkl-1 suppressor screen in C. elegans looking for new components of the planar cell polarity pathway involved in the neuronal polarization of VC4 and VC5. The screen discovered twelve new alleles of vang-1, one new allele of fntb-1 and five new mutations in unknown polarity genes. fntb-1 encodes for the worm ortholog of Farnesyltransferase β-subunit and is important for neuronal polarization. Acting cell and non-cell autonomously, fntb-1 regulates the function and localization of prkl-1 through the recognition of a CAAX motif. Therefore, fntb-1 modifies prkl-1 to regulate the neuronal polarity of VC4 and VC5.
|
Page generated in 0.0783 seconds