Spelling suggestions: "subject:"last multipole"" "subject:"past multipole""
1 |
FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR SOLVING TWO-DIMENSIONAL ACOUSTIC WAVE PROBLEMSBAPAT, MILIND SHRIKANT January 2006 (has links)
No description available.
|
2 |
Characterizing Scattering by 3-D Arbitrarily Shaped Homogeneous Dielectric Objects Using Fast Multipole MethodLi, Jian-Ying, Li, Le-Wei 01 1900 (has links)
Electromagnetic scattering by 3-D arbitrarily shaped homogeneous dielectric objects is characterized. In the analysis, the method of moments is first employed to solve the combined field integral equation for scattering properties of these three-dimensional homogeneous dielectric objects of arbitrary shape. The fast multipole method, and the multi-level fast multipole algorithm are implemented into our codes for matrix-vector manipulations. Specifically, four proposals are made and discussed to increase convergence and accuracy of iterative procedures (conjugate gradient method). Numerical results are obtained using various methods and compared to each other. / Singapore-MIT Alliance (SMA)
|
3 |
Fast dynamic force computation for electrostatic and electromagnetic conductorsKoteeswaran, Prabhavathi 17 February 2005 (has links)
This thesis presents an improved method for dynamic force computation applicable
to both electrostatic and electromagnetic conductors with complex 3D geometries.
During the transient simulation of electrostatic actuated MEMS, the positions of the
conductors as well as the potential applied to the conductors may change, necessitating
recalculation of electrostatic forces at each time step of computation. Similarly,
during the simulation of electromagnetic actuated MEMS, the current re-distribution
in the conductors requires recalculation of electromagnetic forces at each time step.
In this thesis, a simple method based on the principles of fast multipole algorithm
is explored to effectively recalculate the potential coefficients to compute the surface
charges and thereby forces during transient simulation of electrostatic conductors.
The proposed method improves the speed of electrostatic force computation by 15
- 60% at each time step, depending on the displacement, with an error less than
3%. Electromagnetic forces are also computed by the same method. In addition,
an efficient method is also presented for electrostatic analysis of dummy metal filled
interconnects.
|
4 |
Novel tree-based algorithms for computational electromagneticsAronsson, Jonatan January 2011 (has links)
Tree-based methods have wide applications for solving large-scale problems in electromagnetics, astrophysics, quantum chemistry, fluid mechanics, acoustics, and many more areas. This thesis focuses on their applicability for solving large-scale problems in electromagnetics. The Barnes-Hut (BH) algorithm and the Fast Multipole Method (FMM) are introduced along with a survey of important previous work. The required theory for applying those methods to problems in electromagnetics is presented with particular emphasis on the capacitance extraction problem and broadband full-wave scattering.
A novel single source approximation is introduced for approximating clusters of electrostatic sources in multi-layered media. The approximation is derived by matching the spectra of the field in the vicinity of the stationary phase point. Combined with the BH algorithm, a new algorithm is shown to be an efficient method for evaluating electrostatic fields in multilayered media. Specifically, the new BH algorithm is well suited for fast capacitance extraction.
The BH algorithm is also adapted to the scalar Helmholtz kernel by using the same methodology to derive an accurate single source approximation. The result is a fast algorithm that is suitable for accelerating the solution of the Electric Field Integral Equation (EFIE) for electrically small structures.
Finally, a new version of FMM is presented that is stable and efficient from the low frequency regime to mid-range frequencies. By applying analytical derivatives to the field expansions at the observation points, the proposed method can rapidly evaluate vectorial kernels that arise in the FMM-accelerated solution of EFIE, the Magnetic Field Integral Equation (MFIE), and the Combined Field Integral Equation (CFIE).
|
5 |
Novel tree-based algorithms for computational electromagneticsAronsson, Jonatan January 2011 (has links)
Tree-based methods have wide applications for solving large-scale problems in electromagnetics, astrophysics, quantum chemistry, fluid mechanics, acoustics, and many more areas. This thesis focuses on their applicability for solving large-scale problems in electromagnetics. The Barnes-Hut (BH) algorithm and the Fast Multipole Method (FMM) are introduced along with a survey of important previous work. The required theory for applying those methods to problems in electromagnetics is presented with particular emphasis on the capacitance extraction problem and broadband full-wave scattering.
A novel single source approximation is introduced for approximating clusters of electrostatic sources in multi-layered media. The approximation is derived by matching the spectra of the field in the vicinity of the stationary phase point. Combined with the BH algorithm, a new algorithm is shown to be an efficient method for evaluating electrostatic fields in multilayered media. Specifically, the new BH algorithm is well suited for fast capacitance extraction.
The BH algorithm is also adapted to the scalar Helmholtz kernel by using the same methodology to derive an accurate single source approximation. The result is a fast algorithm that is suitable for accelerating the solution of the Electric Field Integral Equation (EFIE) for electrically small structures.
Finally, a new version of FMM is presented that is stable and efficient from the low frequency regime to mid-range frequencies. By applying analytical derivatives to the field expansions at the observation points, the proposed method can rapidly evaluate vectorial kernels that arise in the FMM-accelerated solution of EFIE, the Magnetic Field Integral Equation (MFIE), and the Combined Field Integral Equation (CFIE).
|
6 |
A Fast Multipole Boundary Element Method for Solving Two-dimensional Thermoelasticity ProblemsLi, Yuxiang 28 October 2014 (has links)
No description available.
|
7 |
FMM och dess tillämpning i RandintegralmetoderHalleryd, Max, Holmqvist, Johan January 2024 (has links)
Randintegralmetoder är numeriska beräkningsmetoder för att lösa partiella differential-ekvationer genom att integrera på randen av en domän. Dessa metoder ärbetydligt mer beräkningseffektiva än volymbaserade metoder såsom finita element-eller finita differansmetoder som diskretiserar hela domänen. När man använderrandintegralmetoder för att lösa harmoniska funktioner stöter man på evaluering avO(N^2) potentialer för ett system av N partiklar. Genom att använda algoritmen FastMultipole Method (FMM) kan antalet evalueringar reduceras. I den här rapportenkommer vi att använda oss av randintegralmetoder för att lösa tidsinvarianta Laplacesekvation, och med FMM reducera antalet potentialevalueringar till O(N log N ).
|
8 |
Coloides carregados ou porosos: estudos das propriedades hidrodinâmicas e eletrocinéticas com o método Lattice Boltzmann / Charged or porous colloids: studies of studies of hydrodynamic and electrokinetic properties with Lattice Boltzmann MethodRodrigues Junior, Wagner Gomes 02 September 2016 (has links)
Este trabalho teve como motivação experimental problemas surgidos nos laboratórios de biofísica do IF-USP em medidas com vesículas carregadas, que podem ser usadas para estudar membranas biológicas. As propriedades destes sistemas, e, em particular, como função da temperatura, só podem ser investigadas indiretamente. A interpretação dos resultados depende de uma modelagem coerente. Entre as exigências de coerência, estariam a justificativa para a discrepância entre resultados para as medidas de raio dos macroíons lipídicos, no intervalo de temperaturas próximas à transição gelfluido, obtidas por técnicas experimentais diferentes (Static Light Scattering (SLS) e Dynamic Light Scattering (DLS)) e as anomalias no calor específico, na condutividade e na mobilidade eletroforética da solução coloidal iônica, no mesmo intervalo de temperatura. Estudos anteriores a este trabalho sugeriam a formação de poros em tais vesículas, como tentativa de explicar diferenças nos resultados das técnicas de espalhamento, bem como o papel da análise do equilíbrio termodinâmico da dissociação sobre as propriedades térmicas e termoelétricas. Para interpretar e dar coerência aos diversos resultados experimentais existentes, é necessário desenvolver modelos teóricos. É objetivo deste trabalho desenvolver técnicas de tratamento de modelos teóricos quanto às propriedades de transporte. Assim, neste estudo utilizamos o método computacional conhecido como ``Lattice Boltzmann\'\' (LBM) procurando focar no estudo de propriedades de meios porosos e de coloides carregados. Para melhor compreensão dos limites e justificativas do modelo, realizamos um breve estudo sobre a equação de Boltzmann e suas propriedades. Assim, depois de desenvolver um código em linguagem C para o LBM, e testá-lo com resultados conhecidos, utilizamos o ``Lattice Boltzmann\'\' para determinar o coeficiente de arrasto de esferas e cascas esféricas porosas, comparando com resultados analíticos e experimentais conhecidos. Para o estudo de sistemas coloidais carregados, acoplamos o ``Lattice Boltzmann`` a outra técnica computacional, ``Fast Multipole Method\'\' (FMM), para poder estudar efeitos elétricos e hidrodinâmicos associados aos coloides com carga. Foram feitas simulações de fluxo eletrosmótico e eletrólitos entre placas carregadas que apresentaram resultados animadores ao comparar com resultados analíticos, constatando que FMM pode ser uma alternativa à resolução da equação de Laplace para determinar o potencial eletrostático em simulações com LBM. Além disso foram feitas simulações de mobilidade eletroforética em meios sem sal, que mostram que o código pode ser utilizado como ferramenta na busca da solução para as dúvidas surgidas no estudo de vesículas carregadas. / This study was inspired by the problem of interpreting experimental results arising in the Biophysics Laboratory of the Institute of Physics - USP. Different techniques are used to investigate charged vesicles that are used as an experimental model for biological membranes. Careful measurements of vesicle radius, in the range of gel-fluid transition temperature, through different experimental techniques, namely Static and Dynamic Light Scattering (SLS and DLS) led to very different results. Previous studies of the same system suggested the formation of pores in such vesicles. In addition, specific heat and conductivity measurements on charged vesicles displayed an anomalous region, in the range of gel-fluid transition temperature, as compared to neutral vesicles. In an attempt to make progress in the understanding of the above problems, we use the computational method known as Lattice Boltzmann Method (LBM) seeking to focus on the study of transport properties of porous and charged colloids. To better understand the limits of the model and justifications, we make a brief study of the Boltzmann equation and its properties. Thus, after developing a code in $C$ language for LBM, and testing it with known results, we use the Lattice Boltzmann method to obtain the drag coefficient of spheres and porous spherical shells. We compare our results with analytical and experimental results from the literature and obtain good fitting. For the study of charged colloidal systems, we associate the Lattice Boltzmann method with a computational technique for the calculation of the eletrostatic potential: the Fast Multipole Method (FMM), which enables us to study electrical and hydrodynamic effects on charged colloids. We simulate electroosmotic flow and electrolytes between charged plates, with encouraging results in the comparison with known analytical result. This suggests that FMM may be a good alternative to resolution of the Laplace equation to determine the electrostatic potential simulations with LBM. Moreover we have obtained the electrophoretic mobility for charged colloids in saltless solutions, which makes our code a possible instrument for the interpretation of experimental results on charged vesicles.
|
9 |
[en] APPLICATION OF FAST MULTIPOLE TECHNIQUES IN THE BOUNDARY ELEMENT METHODS / [pt] APLICAÇÃO DE TÉCNICAS DE FAST MULTIPOLE NOS MÉTODOS DE ELEMENTOS DE CONTORNOLARISSA SIMOES NOVELINO 19 February 2019 (has links)
[pt] Este trabalho visa à implementação de um programa de elementos de
contorno para problemas com milhões de graus de liberdade. Isto é obtido com a
implementação do Método Fast Multipole (FMM), que pode reduzir o número
de operações, para a solução de um problema com N graus de liberdade, de
O(N(2)) para O(NlogN) ou O(N). O uso de memória também é reduzido, por não
haver o armazenamento de matrizes de grandes dimensões como no caso de
outros métodos numéricos. A implementação proposta é baseada em um
desenvolvimento consistente do convencional, Método de colocação dos
elementos de contorno (BEM) – com conceitos provenientes do Hibrido BEM –
para problemas de potencial e elasticidade de larga escala em 2D e 3D. A
formulação é especialmente vantajosa para problemas de topologia complicada
ou que requerem soluções fundamentais complicadas. A implementação
apresentada, usa um esquema para expansões de soluções fundamentais
genéricas em torno de níveis hierárquicos de polos campo e fonte, tornando o
FMM diretamente aplicável para diferentes soluções fundamentais. A árvore
hierárquica dos polos é construída a partir de um conceito topológico de
superelementos dentro de superelementos. A formulação é inicialmente acessada
e validada em termos de um problema de potencial 2D. Como resolvedores
iterativos não são necessários neste estágio inicial de simulação numérica, podese
acessar a eficiência relativa à implementação do FMM. / [en] This work aims to present an implementation of a boundary element solver
for problems with millions of degrees of freedom. This is achieved through a
Fast Multipole Method (FMM) implementation, which can lower the number of
operations for solving a problem, with N degrees of freedom, from O(N(2)) to
O(NlogN) or O(N). The memory usage is also very small, as there is no need to
store large matrixes such as required by other numerical methods. The proposed
implementations are based on a consistent development of the conventional,
collocation boundary element method (BEM) - with concepts taken from the
variationally-based hybrid BEM - for large-scale 2D and 3D problems of
potential and elasticity. The formulation is especially advantageous for problems
of complicated topology or requiring complicated fundamental solutions. The
FMM implementation presented in this work uses a scheme for expansions of a
generic fundamental solution about hierarchical levels of source and field poles.
This makes the FMM directly applicable to different kinds of fundamental
solutions. The hierarchical tree of poles is built upon a topological concept of
superelements inside superelements. The formulation is initially assessed and
validated in terms of a simple 2D potential problem. Since iterative solvers are
not required in this first step of numerical simulations, an isolated efficiency
assessment of the implemented fast multipole technique is possible.
|
10 |
Fast numerical methods for high frequency wave scatteringTran, Khoa Dang 03 July 2012 (has links)
Computer simulation of wave propagation is an active research area as wave phenomena are prevalent in many applications. Examples include wireless communication, radar cross section, underwater acoustics, and seismology. For high frequency waves, this is a challenging multiscale problem, where the small scale is given by the wavelength while the large scale corresponds to the overall size of the computational domain. Research into wave equation modeling can be divided into two regimes: time domain and frequency domain. In each regime, there are two further popular research directions for the numerical simulation of the scattered wave. One relies on direct discretization of the wave equation as a hyperbolic partial differential equation in the full physical domain. The other direction aims at solving an equivalent integral equation on the surface of the scatterer. In this dissertation, we present three new techniques for the frequency domain, boundary integral equations. / text
|
Page generated in 0.0569 seconds