Spelling suggestions: "subject:"fator dde bayes"" "subject:"fator dde hayes""
1 |
Análise de agrupamento de semeadoras manuais quanto à distribuição do número de sementes / Cluster analysis of manual planters according to the distribution of the number of seedsAraripe, Patricia Peres 10 December 2015 (has links)
A semeadora manual é uma ferramenta que, ainda nos dias de hoje, exerce um papel importante em diversos países do mundo que praticam a agricultura familiar e de conservação. Sua utilização é de grande importância devido a minimização do distúrbio do solo, exigências de trabalho no campo, maior produtividade sustentável entre outros fatores. De modo a avaliar e/ou comparar as semeadoras manuais existentes no mercado, diversos trabalhos têm sido realizados, porém considerando somente medidas de posição e dispersão. Neste trabalho é utilizada, como alternativa, uma metodologia para a comparação dos desempenhos das semeadoras manuais. Neste caso, estimou-se as probabilidades associadas a cada categoria de resposta e testou-se a hipótese de que essas probabilidades não variam para as semeadoras quando comparadas duas a duas, utilizando o teste da razão das verossimilhanças e o fator de Bayes nos paradigmas clássico e bayesiano, respectivamente. Por fim, as semeadoras foram agrupadas considerando, como medida de distância, a medida de divergência J-divergência na análise de agrupamento. Como ilustração da metodologia apresentada, são considerados os dados para a comparação de quinze semeadoras manuais de diferentes fabricantes analisados por Molin, Menegatti e Gimenez (2001) em que as semeadoras foram reguladas para depositarem exatamente duas sementes por golpe. Inicialmente, na abordagem clássica, foram comparadas as semeadoras que não possuíam valores nulos nas categorias de resposta, sendo as semeadoras 3, 8 e 14 as que apresentaram melhores comportamentos. Posteriormente, todas as semeadoras foram comparadas duas a duas, agrupando-se as categorias e adicionando as contantes 0,5 ou 1 à cada categoria de resposta. Ao agrupar categorias foi difícil a tomada de conclusões pelo teste da razão de verossimilhanças, evidenciando somente o fato da semeadora 15 ser diferente das demais. Adicionando 0,5 ou 1 à cada categoria não obteve-se, aparentemente, a formação de grupos distintos, como a semeadora 1 pelo teste diferiu das demais e apresentou maior frequência no depósito de duas sementes, o exigido pelo experimento agronômico, foi a recomendada neste trabalho. Na abordagem bayesiana, utilizou-se o fator de Bayes para comparar as semeadoras duas a duas, no entanto as conclusões foram semelhantes às obtidas na abordagem clássica. Finalmente, na análise de agrupamento foi possível uma melhor visualização dos grupos de semeadoras semelhantes entre si em ambas as abordagens, reafirmando os resultados obtidos anteriormente. / The manual planter is a tool that today still has an important role in several countries around the world, which practices family and conservation agriculture. The use of it has importance due to minimizing soil disturbance, labor requirements in the field, most sustainable productivity and other factors. In order to analyze and/or compare the commercial manual planters, several studies have been conducted, but considering only position and dispersion measures. This work presents an alternatively method for comparing the performance of manual planters. In this case, the probabilities associated with each category of response has estimated and the hypothesis that these probabilities not vary for planters when compared in pairs evaluated using the likelihood ratio test and Bayes factor in the classical and bayesian paradigms, respectively. Finally, the planters were grouped considering as a measure of distance, the divergence measure J-divergence in the cluster analysis. As an illustration of this methodology, the data from fifteen manual planters adjusted to deposit exactly two seeds per hit of different manufacturers analyzed by Molin, Menegatti and Gimenez (2001) were considered. Initially, in the classical approach, the planters without zero values in response categories were compared and the planters 3, 8 and 14 presents the better behavior. After, all the planters were compared in pairs, grouping categories and adding the constants 0,5 or 1 for each response category. Grouping categories was difficult making conclusions by the likelihood ratio test, only highlighting the fact that the planter 15 is different from others. Adding 0,5 or 1 for each category, apparently not obtained the formation of different groups, such as planter 1 which by the test differed from the others and presented more frequently the deposit of two seeds, required by agronomic experiment and recommended in this work. In the Bayesian approach, the Bayes factor was used to compare the planters in pairs, but the findings were similar to those obtained in the classical approach. Finally, the cluster analysis allowed a better idea of similar planters groups with each other in the both approaches, confirming the results obtained previously.
|
2 |
[en] DETECTING AND SUBSTUTING DISCONTINUITIES IN MINUTE-BY-MINUTE LOAD DATA VIA BAYES FACTOR / [pt] DETECÇÃO E SUBSTITUIÇÃO DE DESCONTINUIDADES NAS SÉRIES DE CARGA MINUTO À MINUTO DO CNOS VIA FATOR DE BAYESSANDRA CANTON CARDOSO 09 November 2005 (has links)
[pt] No Centro Nacional de Operação dos Sistemas - CNOS, órgão
da Eletrobrás, encarregado de controlar o sistema elétrico
brasileiro, localizado em Brasília, a varredura é feita de
20 em 20s e depois agregada para o minuto. Na transmissão
dos dados há muitos erros de medidas acarretando
descontinuidades visíveis. Estes erros podem ser causados
por problemas na transmissão dos dados ou problema físico
da medida em si. O objetivo desta dissertação é a
implementação de um sistema que detecte e corrija estas
descontinuidades nas séries de carga minuto a minuto do
CNOS via Fator de Bayes. / [en] In the National Center for System Operation (CNOS), the
Eletrobrás organ which controls the Brazilian electrical
system, readings of load demand are taken every 20
seconds, and then integrated over the minute, to provide
ninute-to-minute data. These data are then radio-
transmitted via satellite. Many errors occur during the
reading or the transmission, and so the data series
contains many missing values (which appear as
discontinuities in the graph of the series). In this
paper, we propose a system that detects and corrects
automatically these errors in the demand data, by means of
a Bayesian approach using the Bayes factor.
|
3 |
Uma revisão do fator de Bayes com aplicação à modelos com misturas.Missão, Érica Cristina Marins 11 March 2004 (has links)
Made available in DSpace on 2016-06-02T20:05:58Z (GMT). No. of bitstreams: 1
DissECMM.pdf: 1660938 bytes, checksum: 066c901ea835b9ef55119d64f6806e4a (MD5)
Previous issue date: 2004-03-11 / Universidade Federal de Sao Carlos / O fator de Bayes é uma ferramenta utilizada na seleção de modelos. Neste trabalho fazemos uma revisão abrangente de diversos aspectos do fator de bayes. Também apresentamos as soluções disponíveis atualmente para os problemas relacionados à distribuição a priori imprópria como o fator de Bayes intrínseco e o fator de bayes fracional. São apresentados resultados de simulações com o fator de bayes sendo utilizado na seleção de modelos e uma aplicação a um conjunto de dados reais. Nestas smulações e na aplicação utilizamos o fator de Bayes e o fator de Bayes fracional.
|
4 |
Modelo com mistura de multinomiais aplicado à identificação de proteínas similares.Coimbra, Ricardo Galante 24 February 2005 (has links)
Made available in DSpace on 2016-06-02T20:06:08Z (GMT). No. of bitstreams: 1
DissRGC.pdf: 2581095 bytes, checksum: 4a2f54d065969def7422a978d84a16f4 (MD5)
Previous issue date: 2005-02-24 / The proteins are important molecules from the cells, whereas they take part since the construction of cell´s framing until the transmission of the genetic information between the generations. A protein can be characterized by its function and its function is determined by the sequence of amino acids that determines its structure. To determined the protein's function is important, for instance, in a research about the cure of diseases or searching for new drugs. In this research we use a bayesian statistical methodology with mixture of multinomial and latent variables to identify proteins with similar function. We use simulations to verify the performance of the statistical model for identifying the similar proteins. At the end we apply the modeling to a real data set. / As proteínas são moléculas importantes das células, pois participam desde a construção das estruturas celulares até a transmissão de informações genéticas entre gerações. Uma proteína pode ser caracterizada pela sua função, sendo que esta função é determinada pela sequência de aminoácidos que compõe a sua estrutura. Determinar a função protéica é importante quando, por exemplo, se pesquisa a cura de doenças ou se pesquisa a fabricação de novos medicamentos. Neste trabalho utilizamos uma metodologia bayesiana de inferência estatística para inferir sobre o modelo com mistura de distribuições multinomiais e variáveis latentes para identificar proteínas com funções similares. Verificamos a performance da modelagem proposta em separar em grupos as proteínas com funções similares através de simulação.
|
5 |
Análise de agrupamento de semeadoras manuais quanto à distribuição do número de sementes / Cluster analysis of manual planters according to the distribution of the number of seedsPatricia Peres Araripe 10 December 2015 (has links)
A semeadora manual é uma ferramenta que, ainda nos dias de hoje, exerce um papel importante em diversos países do mundo que praticam a agricultura familiar e de conservação. Sua utilização é de grande importância devido a minimização do distúrbio do solo, exigências de trabalho no campo, maior produtividade sustentável entre outros fatores. De modo a avaliar e/ou comparar as semeadoras manuais existentes no mercado, diversos trabalhos têm sido realizados, porém considerando somente medidas de posição e dispersão. Neste trabalho é utilizada, como alternativa, uma metodologia para a comparação dos desempenhos das semeadoras manuais. Neste caso, estimou-se as probabilidades associadas a cada categoria de resposta e testou-se a hipótese de que essas probabilidades não variam para as semeadoras quando comparadas duas a duas, utilizando o teste da razão das verossimilhanças e o fator de Bayes nos paradigmas clássico e bayesiano, respectivamente. Por fim, as semeadoras foram agrupadas considerando, como medida de distância, a medida de divergência J-divergência na análise de agrupamento. Como ilustração da metodologia apresentada, são considerados os dados para a comparação de quinze semeadoras manuais de diferentes fabricantes analisados por Molin, Menegatti e Gimenez (2001) em que as semeadoras foram reguladas para depositarem exatamente duas sementes por golpe. Inicialmente, na abordagem clássica, foram comparadas as semeadoras que não possuíam valores nulos nas categorias de resposta, sendo as semeadoras 3, 8 e 14 as que apresentaram melhores comportamentos. Posteriormente, todas as semeadoras foram comparadas duas a duas, agrupando-se as categorias e adicionando as contantes 0,5 ou 1 à cada categoria de resposta. Ao agrupar categorias foi difícil a tomada de conclusões pelo teste da razão de verossimilhanças, evidenciando somente o fato da semeadora 15 ser diferente das demais. Adicionando 0,5 ou 1 à cada categoria não obteve-se, aparentemente, a formação de grupos distintos, como a semeadora 1 pelo teste diferiu das demais e apresentou maior frequência no depósito de duas sementes, o exigido pelo experimento agronômico, foi a recomendada neste trabalho. Na abordagem bayesiana, utilizou-se o fator de Bayes para comparar as semeadoras duas a duas, no entanto as conclusões foram semelhantes às obtidas na abordagem clássica. Finalmente, na análise de agrupamento foi possível uma melhor visualização dos grupos de semeadoras semelhantes entre si em ambas as abordagens, reafirmando os resultados obtidos anteriormente. / The manual planter is a tool that today still has an important role in several countries around the world, which practices family and conservation agriculture. The use of it has importance due to minimizing soil disturbance, labor requirements in the field, most sustainable productivity and other factors. In order to analyze and/or compare the commercial manual planters, several studies have been conducted, but considering only position and dispersion measures. This work presents an alternatively method for comparing the performance of manual planters. In this case, the probabilities associated with each category of response has estimated and the hypothesis that these probabilities not vary for planters when compared in pairs evaluated using the likelihood ratio test and Bayes factor in the classical and bayesian paradigms, respectively. Finally, the planters were grouped considering as a measure of distance, the divergence measure J-divergence in the cluster analysis. As an illustration of this methodology, the data from fifteen manual planters adjusted to deposit exactly two seeds per hit of different manufacturers analyzed by Molin, Menegatti and Gimenez (2001) were considered. Initially, in the classical approach, the planters without zero values in response categories were compared and the planters 3, 8 and 14 presents the better behavior. After, all the planters were compared in pairs, grouping categories and adding the constants 0,5 or 1 for each response category. Grouping categories was difficult making conclusions by the likelihood ratio test, only highlighting the fact that the planter 15 is different from others. Adding 0,5 or 1 for each category, apparently not obtained the formation of different groups, such as planter 1 which by the test differed from the others and presented more frequently the deposit of two seeds, required by agronomic experiment and recommended in this work. In the Bayesian approach, the Bayes factor was used to compare the planters in pairs, but the findings were similar to those obtained in the classical approach. Finally, the cluster analysis allowed a better idea of similar planters groups with each other in the both approaches, confirming the results obtained previously.
|
6 |
Modelos de resposta ao item com função de ligação t - assimétrica.Pinheiro, Alessandra Noeli Craveiro 20 April 2007 (has links)
Made available in DSpace on 2016-06-02T20:05:59Z (GMT). No. of bitstreams: 1
DissANCP.pdf: 696592 bytes, checksum: 1733e6a92a2421365932309fcb98d372 (MD5)
Previous issue date: 2007-04-20 / The Item Response Theory (IRT) is a set of mathematical models representing the probability of an individual to take a correct response of an item and its ability. The purpose of our research is to show the models formulated in the IRT under the skew-normal distributions and to develop flexible alternative models. With this goal in mind we introduced the t-skew distributions (Azzalini et al. 1999) and results similar to
Bazan s results are obtained. Some applications using Bayesian methods are also considered. / A Teoria de Resposta ao Item (TRI) e um conjunto de modelos matematicos que representam a probabilidade de um indivıduo dar uma resposta certa a um item (questao) como funcao dos parametros do item e da habilidade do indivıduo. O objetivo de nossa pesquisa e apresentar os modelos propostos na TRI normal assimetrica e desenvolver modelos alternativos mais flexıveis. Com esta finalidade em mente, introduzimos a
distribuicao t-assimetrica (Azzalini e Capitanio 1999) e obtemos resultados similares aos obtidos por Bazan (2005). Algumas aplicacoes utilizando metodos bayesianos sao consideradas.
|
7 |
Métodos de agrupamento na análise de dados de expressão gênicaRodrigues, Fabiene Silva 16 February 2009 (has links)
Made available in DSpace on 2016-06-02T20:06:03Z (GMT). No. of bitstreams: 1
2596.pdf: 1631367 bytes, checksum: 90f2d842a935f1dd50bf587a33f6a2cb (MD5)
Previous issue date: 2009-02-16 / The clustering techniques have frequently been used in literature to the analyse data in several fields of application. The main objective of this work is to study such techniques. There is a large number of clustering techniques in literature. In this work we concentrate on Self Organizing Map (SOM), k-means, k-medoids and Expectation- Maximization (EM) algorithms. These algorithms are applied to gene expression data. The analisys of gene expression, among other possibilities, identifies which genes are differently expressed in synthesis of proteins associated to normal and sick tissues. The purpose is to do a comparing of these metods, sticking out advantages and disadvantages of such. The metods were tested for simulation and after we apply them to a real data set. / As técnicas de agrupamento (clustering) vêm sendo utilizadas com freqüência na literatura para a solução de vários problemas de aplicações práticas em diversas áreas do conhecimento. O principal objetivo deste trabalho é estudar tais técnicas. Mais especificamente, estudamos os algoritmos Self Organizing Map (SOM), k-means, k-medoids, Expectation-Maximization (EM). Estes algoritmos foram aplicados a dados de expressão gênica. A análise de expressão gênica visa, entre outras possibilidades, a identificação de quais genes estão diferentemente expressos na sintetização de proteínas associados a tecidos normais e doentes. O objetivo deste trabalho é comparar estes métodos no que se refere à eficiência dos mesmos na identificação de grupos de elementos similares, ressaltando vantagens e desvantagens de cada um. Os métodos foram testados por simulação e depois aplicamos as metodologias a um conjunto de dados reais.
|
Page generated in 0.0408 seconds