• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • Tagged with
  • 14
  • 14
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Injections électromagnétiques : développement d’outils et méthodes pour la réalisation d’attaques matérielles. / EM injections into Secure Devices

Poucheret, François 23 November 2012 (has links)
Les attaques en fautes consistent à perturber le fonctionnement d'un circuit intégré afin d'accéder à des informations confidentielles. Ce type d'attaque est critique pour la sécurité d'une application, en raison de la vaste gamme d'effets possibles : saut d'instructions, modifications de valeurs de registres … Les moyens mis en œuvre pour corrompre le fonctionnement d'un dispositif électronique sont divers et variés. Un circuit peut ainsi être utilisé en dehors de ses limites opérationnelles (en T°, V ou fréquence d'horloge), être soumis à de brusques variations de tension ou voir son signal d'horloge altéré. Ces attaques restent néanmoins globales, car elles perturbent le circuit dans son intégralité. De fait, elles sont facilement détectables par les nombreuses contremesures et capteurs intégrés de nos jours dans les circuits sécurisés. Des techniques plus élaborées ont ainsi vu le jour, notamment attaques dites LASER. Elles permettent de cibler une zone définie du circuit avec un effet très local, diminuant les risques d'être détectées par les capteurs ainsi que l'apparition de dysfonctionnements complets du système. Toutefois, ces attaques nécessitent une préparation physico-chimique du circuit, à la fois coûteuse et potentiellement destructrice pour l'échantillon ciblé. En raison de leur propriété de pénétration dans les matériaux, les injections électromagnétiques (Electromagnetic Injections) permettent, en théorie, de s'affranchir de toute étape de préparation. Leur capacité à transmettre de l'énergie sans contact direct, ainsi que la possibilité de les produire en possédant un matériel peu onéreux en font une technique de perturbation à fort potentiel. C'est dans ce contexte que cette thèse, intitulée « Injections électromagnétiques : développement d'outils et méthodes pour la réalisation d'attaques matérielles. » a été menée avec comme principaux objectifs la recherche de moyens de perturbation sans contact ne nécessitant pas d'étapes de préparation des échantillons, et produisant des effets localisés. Plus particulièrement, ces travaux de recherche ont donc d'abord été axés sur la réalisation d'une plateforme d'attaques basées sur la génération d'ondes EM harmoniques, en se focalisant sur les éléments clés que sont les sondes d'injection. Diverses expérimentations sur circuits intégrés en technologie récente, notamment sur une structure de générateur d‘horloge interne, ont permis de valider son efficacité. Enfin, des attaques sur générateurs de nombres aléatoires ont également été réalisées et ont démontré la possibilité de réduire l'aléa produit en sortie, en utilisant soit le phénomène de ‘locking' ou de manière plus surprenante, en provocant des fautes lors de l'échantillonnage des données par les éléments mémoires. / Attacks based on fault injection consist in disturbing a cryptographic computation in order to extract critical information on the manipulated data. Fault attacks constitute a serious threat against applications, due to the expected effects: bypassing control and protection, granting access to some restricted operations… Nevertheless, almost of classical ways (T°,V,F) and optical attacks are limited on the newest integrated circuits, which embed several countermeasures as active shield, glitch detectors, sensors… In this context, potentials of Electromagnetic active attacks must undoubtedly be taken into account, because of their benefits (penetrating characteristics, contactless energy transmission, low cost power production…). In this work, EM active attacks based on continuous mode are presented, with a particular attention to the development and optimization of injection probes, with a complete characterization of EM fields provided by each probe at the IC surface. Finally, some experiments are realized on internal clock generator or on true random numbers generators, then evaluated to prove the efficiency of these techniques. Keywords. Hardware Attacks, Faults Attacks, EM induced faults, CMOS Integrated Circuits.
12

Secure and Efficient Implementations of Cryptographic Primitives

Guo, Xu 30 May 2012 (has links)
Nowadays pervasive computing opens up many new challenges. Personal and sensitive data and computations are distributed over a wide range of computing devices. This presents great challenges in cryptographic system designs: how to protect privacy, authentication, and integrity in this distributed and connected computing world, and how to satisfy the requirements of different platforms, ranging from resource constrained embedded devices to high-end servers. Moreover, once mathematically strong cryptographic algorithms are implemented in either software or hardware, they are known to be vulnerable to various implementation attacks. Although many countermeasures have been proposed, selecting and integrating a set of countermeasures thwarting multiple attacks into a single design is far from trivial. Security, performance and cost need to be considered together. The research presented in this dissertation deals with the secure and efficient implementation of cryptographic primitives. We focus on how to integrate cryptographic coprocessors in an efficient and secure way. The outcome of this research leads to four contributions to hardware security research. First, we propose a programmable and parallel Elliptic Curve Cryptography (ECC) coprocessor architecture. We use a systematic way of analyzing the impact of System-on-Chip (SoC) integration to the cryptographic coprocessor performance and optimize the hardware/software codesign of cryptographic coprocessors. Second, we provide a hardware evaluation methodology to the NIST SHA-3 standardization process. Our research efforts cover both of the SHA-3 fourteen Second Round candidates and five Third Round finalists. We design the first SHA-3 benchmark chip and discuss the technology impact to the SHA-3 hardware evaluation process. Third, we discuss two technology dependent issues in the fair comparison of cryptographic hardware. We provide a systematic approach to do a cross-platform comparison between SHA-3 FPGA and ASIC benchmarking results and propose a methodology for lightweight hash designs. Finally, we provide guidelines to select implementation attack countermeasures in ECC cryptosystem designs. We discuss how to integrate a set of countermeasures to resist a collection of side-channel analysis (SCA) attacks and fault attacks. The first part of the dissertation discusses how system integration can affect the efficiency of the cryptographic primitives. We focus on the SoC integration of cryptographic coprocessors and analyze the system profile in a co-simulation environment and then on an actual FPGA-based SoC platform. We use this system-level design flow to analyze the SoC integration issues of two block ciphers: the existing Advanced Encryption Standard (AES) and a newly proposed lightweight cipher PRESENT. Next, we use hardware/software codesign techniques to design a programmable ECC coprocessor architecture which is highly flexible and scalable for system integration into a SoC architecture. The second part of the dissertation describes our efforts in designing a hardware evaluation methodology applied to the NIST SHA-3 standardization process. Our Application Specific Integrated Circuit (ASIC) implementation results of five SHA-3 finalists are the first ASIC real measurement results reported in the literature. As a contribution to the NIST SHA-3 competition, we provide timely ASIC implementation cost and performance results of the five SHA-3 finalists in the SHA-3 standard final round evaluation process. We define a consistent and comprehensive hardware evaluation methodology to the NIST SHA-3 standardization process from Field Programmable Gate Array (FPGA) prototyping to ASIC implementation. The third part of the dissertation extends the discussion on hardware benchmarking of NIST SHA-3 candidates by analyzing the impact of technology to the fair comparison of cryptographic hardware. First, a cross-platform comparison between the FPGA and ASIC results of SHA-3 designs demonstrates the gap between two sets of benchmarking results. We describe a systematic approach to analyze a SHA-3 hardware benchmark process for both FPGAs and ASICs. Next, by observing the interaction of hash algorithm design, architecture design, and technology mapping, we propose a methodology for lightweight hash implementation and apply it to CubeHash optimizations. Our ultra-lightweight design of the CubeHash algorithm represents the smallest ASIC implementation of this algorithm reported in the literature. Then, we introduced a cost model for analyzing the hardware cost of lightweight hash implementations. The fourth part of the dissertation discusses SCA attacks and fault attacks resistant cryptosystem designs. We complete a comprehensive survey of state-of-the-art of secure ECC implementations and propose a methodology on selecting countermeasures to thwart multiple side-channel attacks and fault attacks. We focus on a systematic way of organizing and understanding known attacks and countermeasures. / Ph. D.
13

Balancing energy, security and circuit area in lightweight cryptographic hardware design / L'équilibre entre consommation énergétique, sécurité et surface de circuit dans la conception de matériel cryptographique léger

Portella, Rodrigo 27 October 2016 (has links)
Cette thèse aborde la conception et les contremesures permettant d'améliorer le calcul cryptographique matériel léger. Parce que la cryptographie (et la cryptanalyse) sont de nos jours de plus en plus omniprésentes dans notre vie quotidienne, il est crucial que les nouveaux systèmes développés soient suffisamment robustes pour faire face à la quantité croissante de données de traitement sans compromettre la sécurité globale. Ce travail aborde de nombreux sujets liés aux implémentations cryptographiques légères. Les principales contributions de cette thèse sont : - Un nouveau système d'accélération matérielle cryptographique appliqué aux codes BCH ; - Réduction de la consommation des systèmes embarqués et SoCs ; - Contre-mesures légères des attaques par canal auxiliaire applicables à l'algorithme de chiffrement reconfigurable AES ;- CSAC : Un pare-feu sécurisé sur la puce cryptographique ; - Attaques par analyse fréquentielle ; - Un nouveau protocole à divulgation nulle de connaissance appliquée aux réseaux de capteurs sans fil ; - OMD : Un nouveau schéma de chiffrement authentifié. / This thesis addresses lightweight hardware design and countermeasures to improve cryptographic computation. Because cryptography (and cryptanalysis) is nowadays becoming more and more ubiquitous in our daily lives, it is crucial that newly developed systems are robust enough to deal with the increasing amount of processing data without compromising the overall security. This work addresses many different topics related to lightweight cryptographic implementations. The main contributions of this thesis are: - A new cryptographic hardware acceleration scheme applied to BCH codes; - Hardware power minimization applied to SoCs and embedded devices; - Timing and DPA lightweight countermeasures applied to the reconfigurable AES block cipher; - CSAC: A cryptographically secure on-chip firewall; - Frequency analysis attack experiments; - A new zero-knowledge zero-knowledge protocol applied to wireless sensor networks; - OMD: A new authenticated encryption scheme.
14

Side-channel and fault analysis in the presence of countermeasures : tools, theory, and practice / Canaux cachés et attaques par injection de fautes en présence de contre-mesures : outils, théorie et pratique

Korkikian, Roman 27 October 2016 (has links)
Dans cette thèse nous développons et améliorons des attaques de systèmes cryptographiques. Un nouvel algorithme de décomposition de signal appelé transformation de Hilbert-Huang a été adapté pour améliorer l’efficacité des attaques parcanaux auxiliaires. Cette technique permet de contrecarrer certaines contre-mesures telles que la permutation d’opérations ou l’ajout de bruit à la consommation de courant. La seconde contribution de ce travail est l’application de certaines distributions statistiques de poids de Hamming à l’attaque d’algorithmes de chiffrement par bloc tels que AES, DES ou LED. Ces distributions sont distinctes pour chaque valeur de sous-clef permettent donc de les utiliser comme modèles intrinsèques. Les poids de Hamming peuvent être découverts par des analyses de canaux auxiliaires sans que les clairs ni les chiffrés ne soient accessibles. Cette thèse montre que certaines contremesures peuvent parfois faciliter des attaques. Les contre-mesures contagieuses proposées pour RSA protègent contre les attaques par faute mais ce faisant et moyennant des calculs additionnels facilitent la découverte de la clef. Finalement, des contre-mesures à faible complexité calculatoire sont proposées. Elles sont basées sur le masquage antagoniste, c’est-à-dire, l’exécution d’une opération d’équilibrage sur des données sensibles pour masquer la consommation de courant. / The goal of the thesis is to develop and improve methods for defeating protected cryptosystems. A new signal decompositionalgorithm, called Hilbert Huang Transform, was adapted to increase the efficiency of side-channel attacks. This technique attempts to overcome hiding countermeasures, such as operation shuffling or the adding of noise to the power consumption. The second contribution of this work is the application of specific Hamming weight distributions of block cipher algorithms, including AES, DES, and LED. These distributions are distinct for each subkey value, thus they serve as intrinsic templates. Hamming weight data can be revealed by side-channel and fault attacks without plaintext and ciphertext. Therefore these distributions can be applied against implementations where plaintext and ciphertext are inaccessible. This thesis shows that some countermeasures serve for attacks. Certain infective RSA countermeasures should protect against single fault injection. However, additional computations facilitate key discovery. Finally, several lightweight countermeasures are proposed. The proposed countermeasures are based on the antagonist masking, which is an operation occurring when targeting data processing, to intelligently mask the overall power consumption.

Page generated in 0.0538 seconds