• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 66
  • 23
  • 22
  • 20
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A new methodology to optimize Turnaround Maintenance (TAM) scheduling for gas plants

Elwerfalli, A.A., Khan, M. Khurshid, Munive-Hernandez, J. Eduardo 01 1900 (has links)
Yes / Time, cost and risk are the main elements that effect the operating margin of the oil and gas companies due to Turnaround Maintenance (TAM). Turnaround Maintenance (TAM) is a methodology for the total shutdown of plant facilities during a pre-defined period to execute inspection actions, replacement and repairs according to Scope of Work (SoW). This paper presents a new methodology for improving TAM scheduling of oil and gas plants. The methodology includes four stages: removing Non-critical Equipment (NE) from reactive maintenance to proactive maintenance, risk-based inspection of Critical Static Equipment (CSE), risk-based failure of Critical Rotating Equipment (CRE), and application of failure distributions. The results from improving TAM scheduling is associated with decreasing duration and increasing interval between TAM leading to improved availability, reliability, operation and maintenance costs and safety risks. The paper presents findings from the TAM model application. The methodology is fairly generic in its approach and can also be adapted for implementation in other oil and gas industries that operate under similar harsh conditions.
42

Fuzzy temporal fault tree analysis of dynamic systems

Kabir, Sohag, Walker, M., Papadopoulos, Y., Rüde, E., Securius, P. 18 October 2019 (has links)
Yes / Fault tree analysis (FTA) is a powerful technique that is widely used for evaluating system safety and reliability. It can be used to assess the effects of combinations of failures on system behaviour but is unable to capture sequence dependent dynamic behaviour. A number of extensions to fault trees have been proposed to overcome this limitation. Pandora, one such extension, introduces temporal gates and temporal laws to allow dynamic analysis of temporal fault trees (TFTs). It can be easily integrated in model-based design and analysis techniques. The quantitative evaluation of failure probability in Pandora TFTs is performed using exact probabilistic data about component failures. However, exact data can often be difficult to obtain. In this paper, we propose a method that combines expert elicitation and fuzzy set theory with Pandora TFTs to enable dynamic analysis of complex systems with limited or absent exact quantitative data. This gives Pandora the ability to perform quantitative analysis under uncertainty, which increases further its potential utility in the emerging field of model-based design and dependability analysis. The method has been demonstrated by applying it to a fault tolerant fuel distribution system of a ship, and the results are compared with the results obtained by other existing techniques.
43

Multi-state system in a fault tree analsis of a nuclear based thermochemical hydrogen plant

Zhang, Yuepeng 01 July 2008 (has links)
Nuclear-based hydrogen generation is a promising way to supply hydrogen for this large market in the future. This thesis focuses on one of the most promising methods, a thermochemical Cu-Cl cycle, which is currently under development by UOIT, Atomic Energy of Canada Limited (AECL) and the Argonne National Laboratory (ANL). The safety issues of the Cu-Cl cycle are addressed in this thesis. An investigation of major accident scenarios shows that potential tragedies can be avoided with effective risk analysis and safety management programs. As a powerful and systematic tool, fault tree analysis (FTA) is adapted to the particular needs of the Cu-Cl system. This thesis develops a new method that combines FTA with a reliability analysis tool, multi-state system (MSS), to improve the accuracy of FTA and also improve system reliability. / UOIT
44

Cost effective optimization of system safety and reliability / Konstandseffektiv optimering av systemsäkerhet och tillförlitlighet

Bergström, Joakim, Nilsson-Sundén, Hampus January 2015 (has links)
A method able to analyze and optimize subsystems could be useful to reduce project cost, increase subsystem reliability, improve overall aircraft safety and reduce subsystem weight. The earlier the optimization of development of an aircraft in the design phase can be performed, the better the yield of the optimization becomes. This master thesis was formed in order to construct an automatic analysis method, implementing a Matlab script, evaluating devices forming aircraft subsystems using a Genetic Algorithm. In addition to aircraft subsystems, the method constructed in the work is compatible with systems of various industries with minor modifications of the script.
45

Analyzing Substation Automation System Reliability using Probabilistic Relational Models and Enterprise Architecture

König, Johan January 2014 (has links)
Modern society is unquestionably heavily reliant on supply of electricity. Hence, the power system is one of the important infrastructures for future growth. However, the power system of today was designed for a stable radial flow of electricity from large power plants to the customers and not for the type of changes it is presently being exposed to, like large scale integration of electric vehicles, wind power plants, residential photovoltaic systems etc. One aspect of power system control particular exposed to these changes is the design of power system control and protection functionality. Problems occur when the flow of electricity changes from a unidirectional radial flow to a bidirectional. Such an implication requires redesign of control and protection functionality as well as introduction of new information and communication technology (ICT). To make matters worse, the closer the interaction between the power system and the ICT systems the more complex the matter becomes from a reliability perspective. This problem is inherently cyber-physical, including everything from system software to power cables and transformers, rather than the traditional reliability concern of only focusing on power system components. The contribution of this thesis is a framework for reliability analysis, utilizing system modeling concepts that supports the industrial engineering issues that follow with the imple-mentation of modern substation automation systems. The framework is based on a Bayesian probabilistic analysis engine represented by Probabilistic Relational Models (PRMs) in com-bination with an Enterprise Architecture (EA) modeling formalism. The gradual development of the framework is demonstrated through a number of application scenarios based on substation automation system configurations. This thesis is a composite thesis consisting of seven papers. Paper 1 presents the framework combining EA, PRMs and Fault Tree Analysis (FTA). Paper 2 adds primary substation equipment as part of the framework. Paper 3 presents a mapping between modeling entities from the EA framework ArchiMate and substation automation system configuration objects from the IEC 61850 standard. Paper 4 introduces object definitions and relations in coherence with EA modeling formalism suitable for the purpose of the analysis framework. Paper 5 describes an extension of the analysis framework by adding logical operators to the probabilistic analysis engine. Paper 6 presents enhanced failure rates for software components by studying failure logs and an application of the framework to a utility substation automation system. Finally, Paper 7 describes the ability to utilize domain standards for coherent modeling of functions and their interrelations and an application of the framework utilizing software-tool support. / <p>QC 20140505</p>
46

Model-based approach for automatic generation of IEC-61025 standard compliant fault trees

Zornoza Moreno, Enrique January 2018 (has links)
Reliability and safety of complex software-intensive systems are proved to be a crucial matter since most of these systems fulfil tasks, where a failure could lead to catastrophic consequences. For example, in space systems such as satellites, a failure could result in the loss of the satellite. Therefore, a certain level of reliability and safety must be assured for such systems to trust the services they provide. Standards set this level and put requirements for the analysis and assurance of these properties using documented evidence. In particular, European Cooperation for Space Standardization (ECSS) standards for space systems require Fault Tree Analysis(FTA) for identifying the causes of system failure and consequently safety hazards, as well as fault trees as evidence for the assurance of reliability and safety. In this thesis, we present a tool supported model-based approach to generate fault tree automatically from an existing system modelling and analysis toolset. CHESS is a system and dependability modelling toolset and integrates Concerto-FLA to enable the support of failure logic analysis. We proposed a model-based transformation from Concerto-FLA to fault tree model and implemented it as an Eclipse plugin in CHESS toolset. A case study is performed in the aerospace domain; more specifically we modelled Attitude Control System (ACS) and automatically generated IEC-61025-compliant fault trees. / AMASS project
47

Desenvolvimento de um sistema computacional de gerenciamento de riscos em processos de radioesterilizacao de tecidos biologicos / Development of a computational system (software) of risk management in the process of radio-sterilization of biological tissues

MONTOYA, CYNARA V 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:40Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:16Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
48

Desenvolvimento de um sistema computacional de gerenciamento de riscos em processos de radioesterilizacao de tecidos biologicos / Development of a computational system (software) of risk management in the process of radio-sterilization of biological tissues

MONTOYA, CYNARA V 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:40Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:16Z (GMT). No. of bitstreams: 0 / Este trabalho teve como objetivo o desenvolvimento de um sistema computacional (software) de gerenciamento de risco, viabilizando o diagnóstico dos riscos dos processos de radioesterilização de tecidos biológicos. O gerenciamento de risco pode ser entendido como uma gestão sistemática que tem por objetivo identificar, registrar e controlar os riscos de um processo. Para a execução do gerenciamento de risco são requisitos fundamentais: a experiência, o discernimento e o julgamento de uma equipe multidisciplinar, direcionada por meio de ferramentas de qualidade, no intuito de proporcionar padronização no processo investigativo das causas e efeitos dos riscos; dinamismo também é requisito no alcance do objetivo desejado: a redução e o controle do risco. Nesse sentido, a aplicação do gerenciamento de risco torna-se uma atividade complexa, devido à variedade de profissionais envolvidos. Por isso, o apoio de um sistema computacional é tão importante, pois, no que tange ao gerenciamento de risco, o software facilita as tarefas do responsável pelo processo de radioesterilização de tecidos biológicos, que pode, inclusive, contar com a utilização de normas e guias específicos. Essas informações de sumária importância são indexadas nos diagnósticos de riscos, o que torna possível ao responsável qualificado a execução de ações corretivas para a garantia da segurança do processo. A metodologia adotada neste trabalho foi a pesquisa-ação, segundo a qual o pesquisador desempenha um papel ativo no equacionamento dos problemas encontrados, bem como no acompanhamento e avaliação das ações desencadeadas em função dos problemas observados. O cenário dessa pesquisa-ação foi o Laboratório de Tecidos Biológicos (LTB) no Centro de Tecnologia das Radiações (CTR, IPEN/CNEN-SP, Brasil). O software foi desenvolvido em linguagem PHP e Flash/MySQL e está hospedado num servidor que o torna disponível na internet via endereço www.vcrisk.com.br, podendo, então, ser acessado de qualquer lugar pelo usuário , por meio de um login/senha previamente encaminhados por e-mail. O sistema computacional apresenta uma navegabilidade amigável, o que permite que o usuário seja guiado, passo a passo, no processo investigativo do risco até as suas medidas de redução. Tal sistema direciona o usuário a apresentar a efetividade das ações tomadas para redução do risco dentro de prazos previstos. Assim, o uso desse sistema proporciona à organização (LTB/CTR/IPEN) uma comunicação dinâmica e efetiva entre os membros da equipe multidisciplinar: a) na tomada de decisões; b) nas lições aprendidas; c) no conhecimento do novo risco e suas ações para mantê-lo controlado; e d) no gerenciamento de falhas e riscos, garantindo a realização da principal meta de um laboratório de radioesterilização de tecidos biológicos que é a excelência de qualidade do tecido radioesterilizado. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
49

An overview of fault tree analysis and its application in model based dependability analysis

Kabir, Sohag 18 October 2019 (has links)
Yes / Fault Tree Analysis (FTA) is a well-established and well-understood technique, widely used for dependability evaluation of a wide range of systems. Although many extensions of fault trees have been proposed, they suffer from a variety of shortcomings. In particular, even where software tool support exists, these analyses require a lot of manual effort. Over the past two decades, research has focused on simplifying dependability analysis by looking at how we can synthesise dependability information from system models automatically. This has led to the field of model-based dependability analysis (MBDA). Different tools and techniques have been developed as part of MBDA to automate the generation of dependability analysis artefacts such as fault trees. Firstly, this paper reviews the standard fault tree with its limitations. Secondly, different extensions of standard fault trees are reviewed. Thirdly, this paper reviews a number of prominent MBDA techniques where fault trees are used as a means for system dependability analysis and provides an insight into their working mechanism, applicability, strengths and challenges. Finally, the future outlook for MBDA is outlined, which includes the prospect of developing expert and intelligent systems for dependability analysis of complex open systems under the conditions of uncertainty.
50

Evaluation and verification of an architecture suitable for a multi-unit control room of a pebble bed high temperature reactor nuclear power plant / Herman Visagie

Visagie, Herman January 2015 (has links)
Current regulations specify the minimum number of operators required per nuclear power plant. However, these requirements are based on the operation of large nuclear power plants, which are not inherent safe and can result in a meltdown. For newly developed small nuclear reactors, the current number of operators seems to be excessive causing the technology to be less competitive. Before the number of required operators can be optimised, it should be demonstrated that human errors will not endanger or cause risk to the plant or public. For this study, a small pebble bed High Temperature Reactor (HTR) Nuclear Power Plant (NPP), the Th-100, was evaluated. The inherent safety features of this type of nuclear reactor include independent barriers for fission product capture and passive heat dissipation during a loss of coolant. The control and instrumentation architecture include two independent protection systems. The Control and Limitation System is the first protection system to react if the reactor parameters exceed those of the normal operational safe zone. If the Control and Limitation System fail to maintain the reactor within the safe zone, the Reactor Protection System would at that time operate and force the reactor to a safe state. Both these automated protection systems are installed in a control room local to the reactor building, protected from adverse conditions. In addition, it is connected to a semi-remote control room, anticipated as a multi-unit control room to include the monitoring and control of the auxiliary systems. Probable case studies of human error associated with multi-unit control rooms were evaluated against the logic of the Control and Limitation System. Fault Tree Analysis was used to investigate all possible failures. The evaluation determined the reliability of the Control and Limitation System and highlighted areas which design engineers should take into account if a higher reliability is required. The scenario was expanded, applying the same methods, to include the large release of fission products in order to verify the reliability calculations. The probability of a large release of fission products compared with studies done on other nuclear installations revealed to be much less for the evaluated HTR as was expected. As the study has proved that human error cannot have a negative influence on the safety of the reactor, it can be concluded that the first step has been met which is required, when applying for a waiver to utilise a multi-unit control room for the small pebble bed HTR NPP. Also, from the study, it is recommended that a practical approach be applied for the evaluation of operator duties on a live plant, to optimise the number of operators required. This in turn will position the inherent safe HTR competitively over other power stations. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0673 seconds