• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 328
  • 99
  • 82
  • 68
  • 23
  • 12
  • 7
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 731
  • 291
  • 146
  • 79
  • 72
  • 57
  • 49
  • 48
  • 46
  • 45
  • 40
  • 40
  • 39
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Condition monitoring of diesel engines

Moore, David John January 2013 (has links)
Reliability of emergency Diesel generator systems, or indeed any Diesel engines in a wide range of fields is critical. Traditional maintenance procedures for these engines follow time based or statistical based methods. Due to the wide variety of uses of Diesel engines it is not possible for these forms of maintenance to be as effective as condition based monitoring. Condition based monitoring holds many advantages over traditional maintenance methods. It allows for the earlier detection and diagnosis of a fault and allows for planned maintenance work avoiding costly and unexpected downtime. It also reduces the overall maintenance costs as parts need only be replaced when they are worn or faulty, not based on a time schedule. The ability to unobtrusively monitor the engines also has many advantages in- cluding reduced sensor cost and negating the need to tamper permanently with the engine. Acoustic monitoring has been identified as the most prominent and effective way in which to achieve this goal. As such, extensive experimentation was carried out on both large and small Diesel engines over a wide range of speeds, loads and faults and the data was then analysed. The data was first investigated statistically and then processed using Independent Component Analysis after the statistical re- sults were found to be poor. A program was written for the automatic comparison of the collected data and the results presented in this thesis show that ICA and acoustic emissions have the ability to aid in engine fault detection and diagnosis. The results have shown to be reliable, consistent and able to distinguish when the engine is healthy or faulty.
232

Diagnosis of Constant Faults in Read-Once Contact Networks over Finite Bases using Decision Trees

Busbait, Monther I. 05 1900 (has links)
We study the depth of decision trees for diagnosis of constant faults in read-once contact networks over finite bases. This includes diagnosis of 0-1 faults, 0 faults and 1 faults. For any finite basis, we prove a linear upper bound on the minimum depth of decision tree for diagnosis of constant faults depending on the number of edges in a contact network over that basis. Also, we obtain asymptotic bounds on the depth of decision trees for diagnosis of each type of constant faults depending on the number of edges in contact networks in the worst case per basis. We study the set of indecomposable contact networks with up to 10 edges and obtain sharp coefficients for the linear upper bound for diagnosis of constant faults in contact networks over bases of these indecomposable contact networks. We use a set of algorithms, including one that we create, to obtain the sharp coefficients.
233

Stratigraphy, structural geology, and tectonic implications of the Shoo Fly Complex and the Calaveras-Shoo Fly thrust, Central Sierra Nevada, California

Merguerian, Charles January 1985 (has links)
Mylonitic rocks of the Shoo Fly Complex form a region of epidote-amphibolite grade quartzose and granitoid gneiss, subordinate schist and calcareous rocks, and rare amphibolite in the foothills of the Sierra Nevada range in central California. The Shoo Fly has endured a complicated Phanerozoic structural development involving seven superposed deformations at variable crustal depths. The first four of these (D1-D4) involved tight to isoclinal folding and shearing under medium grade metamorphic conditions. The last three (D5-D7) are marked by open folding and retrograde metamorphism of older fabric elements. The Shoo Fly is in ductile fault contact with east-dipping argillite, chert, and marble of the Calaveras Complex. The Calaveras-Shoo Fly thrust formed during D3 and is a 1-2 km wide syn-metamorphic ductile shear zone. Recognition of D3 overprinting of older Dl+D2 fabrics along the thrust zone indicates that upper plate Shoo Fly rocks record an earlier and more complex structural history than the lower plate Calaveras rocks. Paleozoic gneissic granitoids, an important lithologic component of the Shoo Fly, were intruded as a series of plutons ranging from calc-alkaline gabbro to granitoid (predominate) to syenite. They truncated the early S1 foliation in the Shoo Fly and were folded during regional D2 and D3 events when they were penetratively deformed into augen gneiss, blastomylonite, and ultramylonite. The Sonora dike swarm occurs as an areally extensive (> 1500 km2) subvertical consanguineous suite of andesite, lamprophyre, and basalt dikes that trend east-west across the Calaveras and Shoo Fly Complexes. The metamorphic complexes form the basement to a middle Jurassic calc-alkaline plutonic arc (Jawbone granitoid sequence). A middle Jurassic K-Ar age on the dikes (157-159 m.y.) together with the data of this report indicate that they are petrogenetically related to the Jawbone granitoid sequence and that the dikes probably formed during subduction beneath a continental arc. The dikes provide an important structural marker in the Shoo Fly and Calaveras Complexes. Intrusion of the dike swarm was sensitive to a structural anisotropy in the basement complexes. Since they intruded east-west along a spaced regional schistosity developed during folding of the Calaveras-Shoo Fly thrust, thrusting and subsequent folding were clearly pre-middle Jurassic events. Available geochronologic data sets middle Ordovician to late Devonian intrusive ages for the gneissic granitoids, establishing a pre-late Devonian depositional age for the Shoo Fly. D1 and intrusion of the orthogneiss protoliths may have been precursors of the Late Devonian to Early Mississippian Antler orogeny or, alternatively, may have occurred significantly earlier than the Antler orogeny. Based on cross-cutting relations, D2 formed during the Antler orogeny, D3 and possibly D4 during the Sonoma orogeny, and D5 and D6 during the Nevadan orogeny.
234

Fault and Fluid Interactions in the Elsinore Fault-West Salton Detachment Fault Damage Zones, Agua Caliente County Park, California

Wood, Rebekah Erin 01 May 2014 (has links)
This study area provides a unique opportunity to study the intersection of the Elsinore and West Salton detachment faults in southern California, effusing warm springs, and alteration products in the midst of the fault intersection. Structural mapping and compiling previous maps supply an interpretation of the fault zone geometries within the Tierra Blanca Mountains. Geochemical analysis of the crystalline basement and altered protolith help determine the effects of faulting and fluid flow in the study area. In the Tierra Blanca Mountains, the Elsinore strike-slip fault system transitions from the double-stranded Julian segment and Earthquake Valley fault in the northwest, to the single-stranded Coyote Mountain segment in the southeast. A network of cross faults striking northeast connects the fault segments. The Coyote Mountain segment encounters the inactive West Salton detachment fault in the study area. The detachment fault is a barrier to fluid flow and exhibits primarily brittle deformation, while the Coyote Mountain segment is a conduit for fluid flow along the northeastern flank of the Tierra Blanca Mountains. The damage zone of the Coyote Mountain segment reaches widths up to 500 m and contains intense fracturing and subsidiary faults striking parallel to the main trace. The tonalite protolith is bleached, stained, and altered from water-rock interactions. The most intense bleaching is at a county park, where the protolith is altered to clays and zeolites while the mineralogy of the stained regions contains iron oxides and clinochlore in addition to quartz, Ca-rich albite, and biotite preserved from the protolith. The water chemistry at Agua Caliente hot springs shows the fluid is partially equilibrated. Groundwater temperatures likely reached 75-85°C at depths up to 2.14 km before rising to the surface. Frequent seismicity in the study region is related to the spring characteristics including water level, conductivity, and temperatures. Spring temperature and conductivity displayed three behaviors during the summer 2011 logging period, attributed to seasonal changes and most likely local seismicity as well. Conductivity seems to be the property most influenced by earthquake activity in the area. Changes in fluid chemistry between sampling periods may indicate mixture with other fluid sources.
235

Analysis of Small Faults in a Sandstone Reservoir Analog, San Rafael Desert: Implications for Fluid Flow at the Reservoir-Scale

Clayton, Leslie Noël 01 May 2019 (has links)
We examined small-displacement faults in the Jurassic Entrada Sandstone adjacent to the Iron Wash Fault, central Utah east of the San Rafael Swell, in order to describe the nature and timing of past fluid movement and deformation in the Entrada Sandstone. Using field studies, microscopy, and X-ray diffraction analysis, we identified mineralized fractures and cementation features in association with deformation bands and fractures at the interface of the Earthy and Slick Rock Members of the Entrada Sandstone. Where the faults cross the Earthy-Slick Rock Member interface, deformation band faults in the Slick Rock Member become opening-mode fractures in the Earthy Member. These fractures are frequently mineralized with calcite, and goethite pseudomorphs after pyrite, providing evidence of at least two phases of fluid flow from the Entrada reservoir into the caprock in connection with deformation bands. We also observe mineralized fractures, poikilotopic cementation, and spherical to elongate concretions on and within deformation band fins in the Slick Rock Member. These features indicate the presence and movement of fluids parallel to and between deformation band fins. At some sites, deformation band faults and fractures cross and offset the interface; at others, they are present in both units, but deformation band faults do not cross the interface and fractures are not directly connected to any bands. Mineralized fractures are only found at breached-interface sites; evidence for fluid flow in the Slick Rock Member is only found in deformation band fins. Interface crossing and fracture formation is not related to proximity to the Iron Wash Fault. We propose that mesoscale faults can act as seal bypass systems and allow fluid leakage from reservoir rock into overlying less permeable rocks. Deformation bands act as both conduits for and barriers to flow, seen most clearly in deformation band fins where iron staining and mineralization is constrained between sets of bands within the fin. In CO2 or wastewater injection scenarios, interface deformation may prevent successful fluid trapping and cause re-emission of injected fluids.
236

A geophysical study of the North Scappoose Creek, Alder Creek, Clatskanie River lineament, along the trend of the Portland Hills fault, Columbia County, Oregon

Haas, Nina 01 January 1982 (has links)
The Portland Hills fault forms a strong northwest trending lineament along the east side of the Tualatin Mountains. An en echelon lineament follows North Scappoose Creek, Alder Creek, and the Clatskanie River along the same trend, through Columbia County, Oregon. The possibility that this lineament follows a fault or fault zone was investigated in this study. Geophysical methods were used, with seismic refraction, magnetic and gravity lines run perpendicular to the lineament. The seismic refraction models indicate the near surface basalt is broken in many places, with 15 - 30 meters (50 - 100 feet) vertical displacement, down to the west, at Bunker Hill along the Alder Creek fault. Gravity models required a faulted zone approximately two kilometers wide across the lineament. The proposed fault zone is more clearly defined in the south, becoming more diffuse and branching in the northern part of the study area. The Bouguer gravity values from this study distort the -40 milligal contour farther to the northwest than is shown on the Complete Bouguer Gravity Anomaly Map of Oregon {Berg and Thiruvathukal, 1967b). The existence of sharp topographic features and the geophysical evidence indicate fault activity along the zone.
237

Late Holocene Paleoseismicity along the Northern Oregon Coast

Darienzo, Mark Edward 01 January 1991 (has links)
Marsh paleoseismological studies were conducted in four bays (Necanicum, Nestucca, Siletz, and Yaquina) along the northern Oregon coast and compared with completed studies in two other bays (Netarts and Alsea). Coseismically buried peats were identified in all bays, based on 1) abrupt contacts, decreases in organic content, increases in sand content, increases in beach sand, and changes in diatom assemblages, all from the peat to the overlying sediments, 2) distinct sandy layers and key plant macrofossils, such as Triglochin, above the buried peat, and 3) widespread correlation of the buried peats within the bay. The stratigraphy and the ages and depths of the top six coseismically buried peats were compared between bays. The following similarities were noted: 1) All bays recorded five burial events in the top 2.6 meters within the last 2200 years. 2) Six burial events were recorded in six bays in the top 3.0 meters, except Alsea Bay (3.3 m), and all six events occurred within the last 2600 years except Yaquina (2780 years). 3) The depth to the top of each buried peat in the bays is consistent, falling within discrete ranges, except for the top two events at Yaquina. 4) Distinct sandy layers (tsunami-deposited) are present over the topmost buried peat in all bays except Yaquina and over the 4th in all bays except Yaquina and Nestucca. 5) Distinct tsunami-deposited sandy layers are absent over the third buried peat in Netarts, Nestucca, Siletz, Alsea, and possibly Yaquina, but present at Necanicum. The evidence strongly suggests synchroneity of coseismic events between the Necanicum River and Alsea Bay (a distance of 175 km), with the exception of the 2nd and 6th event. The 6th coseismic event would be synchronous between Alsea and Netarts, a distance of 105 km. The support for synchroneity of the 2nd event is weak. Synchroneity of coseismic burial events on the northern Oregon coast would argue for paleomagnitudes of at least 8.1 Mw, given a minimum rupture width of 50 km and a rupture length of 105 km. The paleomagnitudes were determined using the moment magnitude equation, Mw = 2/3 IOg10 Mo - 10.7 where Mo = shear modulus x rupture area x seismic slip. The seismic slip is estimated from a minimum recurrence interval of 300 years and a minimum convergence rate of 3.5 cm/yr.Marsh paleoseismological studies were conducted in four bays (Necanicum, Nestucca, Siletz, and Yaquina) along the northern Oregon coast and compared with completed studies in two other bays (Netarts and Alsea). Coseismically buried peats were identified in all bays, based on 1) abrupt contacts, decreases in organic content, increases in sand content, increases in beach sand, and changes in diatom assemblages, all from the peat to the overlying sediments, 2) distinct sandy layers and key plant macrofossils, such as Triglochin, above the buried peat, and 3) widespread correlation of the buried peats within the bay. The stratigraphy and the ages and depths of the top six coseismically buried peats were compared between bays. The following similarities were noted: 1) All bays recorded five burial events in the top 2.6 meters within the last 2200 years. 2) Six burial events were recorded in six bays in the top 3.0 meters, except Alsea Bay (3.3 m), and all six events occurred within the last 2600 years except Yaquina (2780 years). 3) The depth to the top of each buried peat in the bays is consistent, falling within discrete ranges, except for the top two events at Yaquina. 4) Distinct sandy layers (tsunami-deposited) are present over the topmost buried peat in all bays except Yaquina and over the 4th in all bays except Yaquina and Nestucca. 5) Distinct tsunami-deposited sandy layers are absent over the third buried peat in Netarts, Nestucca, Siletz, Alsea, and possibly Yaquina, but present at Necanicum. The evidence strongly suggests synchroneity of coseismic events between the Necanicum River and Alsea Bay (a distance of 175 km), with the exception of the 2nd and 6th event. The 6th coseismic event would be synchronous between Alsea and Netarts, a distance of 105 km. The support for synchroneity of the 2nd event is weak. Synchroneity of coseismic burial events on the northern Oregon coast would argue for paleomagnitudes of at least 8.1 Mw, given a minimum rupture width of 50 km and a rupture length of 105 km. The paleomagnitudes were determined using the moment magnitude equation, Mw = 2/3 IOg10 Mo - 10.7 where Mo = shear modulus x rupture area x seismic slip. The seismic slip is estimated from a minimum recurrence interval of 300 years and a minimum convergence rate of 3.5 cm/yr.
238

Structures and metamorphism of Ptarmigan Creek area, Selwyn Range, B.C.

Forest, Richard C. January 1985 (has links)
No description available.
239

Transformer fault event detection and classification using PMUs

Paudel, Yadunandan 13 May 2022 (has links) (PDF)
Transformer is one of the most reliable components in an electric power system, however its failure has huge opportunity costs for an electric utility. In this work, we detect transformer electrical faults promptly and accurately classify the fault types using voltage/current data from Phasor Measurement Units. Our work can also eliminate uncertainties which are inherent in traditional transformer fault diagnostic techniques like dissolved gas analysis. In this thesis, first, possible causes of transformer failures are discussed, and four common transformer electrical faults are identified. Second, a comprehensive simulation model for electrical faults is developed. Third, fast and efficient abrupt change detection algorithms are applied for fault event detection. Finally, selected supervised machine learning classifiers are trained to classify type of transformer electrical faults. Our proposed work can be used with alarms and relays to notify system operators and remove the faults, as well as for post-mortem analysis of transformer failures.
240

Structural evolution of the Max Meadows thrust sheet, Southwest Virginia

Gibson, R. G. (Richard G.) January 1983 (has links)
M. S.

Page generated in 0.0632 seconds