Spelling suggestions: "subject:"faults (deology)"" "subject:"faults (caveology)""
211 |
Styles of detachment faulting at the Kane Fracture Zone oceanic core complex, 23°N Mid-Atlantic RidgeHansen, Lars. January 2007 (has links)
Thesis (M.S.)--University of Wyoming, 2007. / Title from PDF title page (viewed on Mar. 4, 2009). Includes bibliographical references (p. 50-59).
|
212 |
Die aanvanklike rotsbeweging van seismiese gebeurtenisse in die KlerksdorpgoudveldPotgieter, Gert Johannes 12 February 2014 (has links)
M.Sc. (Geology) / There was a possibility that the rockbursts experienced in the faulty Klerksdorp Goldfield area could be related to the numerous faults, fractures and dykes occurring in the area. Until the end of 1979 it was impossible to establish with any degree of certainty which discontinuity was associated with most of the seismic events, as the location network was too inaccurate at that stage to determine such associations. The accuracy of the network was subsequently improved to 30 m in all directions in a specific area of the macro-network. Twenty seven percent of the seismic events which located in this area, occurred less than 30 m from the faults, 21 percent were less than 30 m from the dykes, while 42 percent occurred less than 30 m from dykes and faults. The remainder ( 10 percent) were located more than 30 m from any of the abovementioned discontinuities.
|
213 |
Fault-controlled hydrothermal alteration of Palaeoproterozoic manganese ore in Wessels Mine, Kalahari Managanese FieldBurger, Albert Meiring 02 April 2014 (has links)
M.Sc. (Geology) / Refer to full text to view abstract
|
214 |
Die SuikerbosverskuiwingVermaakt, Deon Tobias 25 November 2014 (has links)
M.Sc. (Geology) / Please refer to full text to view abstract
|
215 |
Pseudotachylites of the West Rand Goldfield, Witwatersrand Basin, South AfricaKillick, Andrew Martin 23 July 2014 (has links)
D.Phil. (Geology) / This study examines the nature, distribution and origin of a distinctive chert-like fault rock in the West Rand Goldfield of the Witwatersrand Basin in South Africa. These fault rocks, termed pseudotachylites, are characterized by an aphanitic groundmass enclosing subangular to rounded clasts of the host rocks. No glass has been observed in the matrix but features such as spherulites, coronas and altered margins to the host rocks as well as geochemical evidence, suggest that the pseudotachylite formed as a result of melting of the host rocks due to the heat generated by friction on faults. The colour of the pseudotachylite is a function of its chemical composition and parentage. The pseudotachylite has abrupt contacts with the host rocks which comprise a lower Proterozoic to Archaean succession of rocks belonging to the predominantly sedimentary Transvaal Sequence, the predominantly volcanic Ventersdorp Supergroup and the predominantly . sedimentary Witwatersrand Supergroup. The orientation of many of the pseudotachylite fault veins parallels a pre-existing set of mylonitic faults. These pseudotachylite fault veins most commonly occur in sub parallel southward dipping pairs and are accompanied by injection veins. If treated on a statistical basis, the vergence concept can be extended to injection veins to give the approximate movement direction of the fault system. The pseudotachylite is thought to be genetically related to brittle or semi-brittle extensional faulting of post-Transvaal age.
|
216 |
Electric and magnetic fields associated with a vertical fault.Coode, Alan Melvill January 1963 (has links)
Interest In the vertical fault problem for electromagnetic fields has been recently revived by the papers of I. d'Erceville and G. Kunetz (1962) and D. Rankin (1962). In the derivation of his equations Rankin used d'Erceville1s theory which contains some fallacious assumptions. These have been pointed out by J.T. Weaver (1962) and also in this thesis.
This thesis follows the lines of mathematical attack first employed by d'Erceville and Kunetz, and later developed by Weaver, in applying the theory of integral transforms to the partial differential equations satisfied by land and sea conductors. The problem of both a vertical fault and also a sloping fault, i.e. 0 < α < 90° where α is the angle of dip of the fault are considered.
The results in the general case are Inconclusive, no solution has been found and no solution is suggested. The case of α = 90° has proved to be equally indeterminate, but a solution has been suggested, which, although it has not been proved rigourously, does not appear to violate any physical principles and also seems to represent the field equations on the surface of the land and the sea. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
|
217 |
Hydrogéologie des zones de faille du socle cristallin : implications en terme de ressources en eau pour le Massif Armoricain / Fault zone hydrogeology in crystalline media : implication in term of groundwater ressources for the Armorican MassifRoques, Clément 22 November 2013 (has links)
Les régions de socle cristallin, pourtant largement représentées à l'échelle mondiale, sont réputées pour leurs modestes ressources en eaux souterraines. La valorisation des eaux souterraines dans les régions de socle est majoritairement limitée aux formations altérées et fissurées de sub-surface. Cependant, ces ressources sont souvent négligées au profit des eaux de surface en raison de leurs faibles débits d'exploitation et de leurs vulnérabilités aux polluants anthropiques. De récentes études de prospection et de recherche ont révélé la présence de ressources souterraines importantes, au delà des horizons superficiels classiquement exploités. Cependant peu d'informations spécifiques à ces ressources profondes sont disponibles, notamment concernant la structure des systèmes aquifères et leurs particularités hydrogéologiques. Par cette étude nous mettons clairement en évidence la présence de ressources en eau conséquentes dans le socle cristallin profond du Massif Armoricain. Ces ressources sont associées à des systèmes de failles assurant des capacités de drainage des réservoirs de stockage connectés. Les réservoirs de stockage superficiels et bordiers assurent l'alimentation en eau du réseau de fracture principal. Cette capacité de drainage est dépendante de la géométrie du plan de faille perméable. Les failles sub-horizontales sont les structures les plus efficaces dans cette fonction. Le stockage dans les formations bordières au système de faille apparaît déterminant pour assurer un débit d'exploitation conséquent. Cette étude permet d'établir une conceptualisation générale de ces systèmes de faille, tant d'un point de vue hydrodynamique que géochimique, et apporte des pistes de réflexions pour la gestion et la protection de telles ressources en eau. / Crystalline basement regions, although largely represented at continental scale, are characterized by a low groundwater resources availability. Groundwater in crystalline areas appear to be mostly limited to weathered and fractured reservoirs at sub-surface depths. But these resources are often disregarded in favor of surface water because of low yields and their vulnerability to anthropogenic contaminants. Recent specific studies have revealed the presence of significant groundwater resources beyond the superficial reservoirs traditionally exploited. However, only few specific information is available concerning these type of resources, especially concerning their structural aquifer morphology and their hydrogeological properties. This study demonstrates the presence of substantial groundwater resources in the Armorican Massif crystalline basement. These resources are associated to fault systems providing drainage capacity of connected reservoir storage. Water supply of the main permeable fault domain during pumping is ensured by sub-surface and burdened reservoir storage. The drainage capacity is dependent on the geometry of the main permeable fault. Sub-horizontal faults are the most efficient structures to warrant this function. Storage in burdened formations of the fault system appears to ensure high groundwater yield. This study establishes hydrodynamic and geochemical conceptualization of a fault system, and provides thinking points in term of management and protection to ensure groundwater resources availability.
|
218 |
The mechanics of bedding-parallel faulting associated with the Ventersdorp contact reef on the Kloof Gold MineBerlenbach, Joachim Wilhelm 02 June 2014 (has links)
D.Phil. (Geology) / The structural history and mechanisms of bedding-parallel faulting associated with the Ventersdorp Contact Reef (VCR) on the Kloof Gold Mine are discussed. Pre-VCR deformation is determined by folding of the Booysens Shale Formation and the Turffontein Subgroup. Extension of Ventersdorp age (± 2700 Ma) probably took place by the simultaneous operation of normal, strike-slip and oblique slip faults (mixed-mode extension). Because the strikeslip and oblique-slip faults were extensional, they could be utilised as conduits for dykes, forming "Fault and Dyke Zones". Northwestward directed thrusting, which postdates the normal faulting, resulted in positive inversion. The thrust faults have a ramp-flat symmetry with ramps forming in the VCR horizon and the overlying Alberton Formation and flats forming in the underlying Booysens Shale Formation and along the contact between the VCR and the Alberton Formation. The thrust faults follow complex deformation paths, indicated by out-of-sequence thrusting, simultaneous folding and thrusting, underthrusting and compressed boudins. Hanging-wall ripouts, which can be related to this thrust event, are introduced as a shear sense indicator. No northwestward verging thrust faults of post-Transvaal age (post 2430 Ma) could be identified, indicating that this compressional event occurred prior to the deposition of the Black Reef Quartzite Formation. The minimum amount of shortening due to northwestward directed thrusting was estimated as 37 % with the help of restored sections. However, due to the out-of-sequence propagation of thrust faults, a control of the strain estimation was possible and true shortening probably exceeded the calculated amount of shortening considerably. The restoration of sections with out-of sequence thrusts is discussed in detail. Sheath fold-like structures in pseudotachylyte can be related to northwestward directed thrusting and are introduced as a new shear sense indicator.
|
219 |
Mapping earthquake temperature rise along faults to understand fault structure and mechanicsCoffey, Genevieve Li Lynn January 2021 (has links)
Recent advances in the use of thermal proxies provide a window into how faults slip during earthquakes. Faults have a similar large-scale structure with a fault core, where earthquakes nucleate, and a surrounding damage zone, but complexities in fault zone architecture and rheology influence earthquake propagation. For example, changes in thickness of slipping layers in the fault core, compositional heterogeneity, and fault surface topography can influence fault strength and either facilitate or arrest a rupture. A further barrier to our understanding of earthquake behavior is in constraining the frictional energy that goes into the earthquake energy budget. Earthquakes can propagate when the energy available at the rupture tip is greater or equal to the energy being expended through radiation of seismic waves, permanent deformation within the process zone, and heat through friction. By quantifying the total energy involved in coseismic slip we can gain a more complete picture of the energy required for rupture propagation and how this may vary across faults. Although fracture and radiated energy can be constrained seismologically, thermal energy requires quantification by other means, and up until recently only few estimates existed for frictional energy. In this thesis I utilize biomarker thermal maturity to quantify temperature rise across multiple faults and explore what this can tell us about earthquake behavior. In chapters two through four, I focus on three large faults of varying structural and rheological complexity.
Beginning with the Muddy Mountain thrust of southeast Nevada in Chapter two, I identify thermal evidence of coseismic slip in principal slip zones (PSZs) along this exhumed fault. I show that considerable heterogeneity in the thickness of slipping layers occurs a long a fault and that this has a large effect on coseismic temperature rise and hence fault strength, due to the effect of high temperature dynamic weakening mechanisms.
In Chapter three, I move on to the creeping central deforming zone of the San Andreas fault, and show that it has experienced many large earthquakes that are clustered in a 4 m-wide zone adjacent to an actively creeping region. This work shows that the central San Andreas fault and other creeping faults can host seismic slip and should be included in seismic hazard analyses. Furthermore, I demonstrate the potential of K/Ar dating as a tool to constrain the age of earthquakes and find that these central San Andreas fault events are as young as ~3.3 Ma.
In Chapter four, I focus on the Hikurangi Subduction zone, which has hosted large earthquakes and regular slow slip events in the past. Here, using drill core collected through the Pāpaku fault, a splay fault of the Hikurangi megathrust, I find evidence of temperature rise in the fault zone and deep hanging wall. Coupled forward models of heat generation and biomarker reaction kinetics estimate that displacement during these earthquakes was likely 11-15 m. These and other splay faults along the margin may pose considerable seismic and tsunami hazard to near-shore communities in the North Island of New Zealand.
In Chapter five I explore what we have learned about fault behavior from biomarkers and other thermal proxies. I include measurements from five new faults and compile observations and measurements from past studies to explore how coseismic slip is localized across fault zones and put together a database of frictional energy estimates. Coseismic slip can broadly be described by two different scales of earthquake localization and that this is a function of total displacement, and to a lesser extent, material contrast across the fault. I see that frictional energy is relatively similar across faults of different displacement, depth, and maturity, and conclude that frictional energy is limited by the onset of dynamic weakening. Finally, I put together constraints on the energies involved in the budget to produce the first complete view of the earthquake energy budget and provide estimates of the total energy required for earthquake rupture across different faults.
|
220 |
A Characterization of Lake Abert Tufa Mounds Lake Abert, OregonBartruff, Anthony Lynn 04 March 2013 (has links)
A series of tufa mounds is found within the northern basin of Lake Abert, located within southeastern Oregon. The mounds have been divided into 3 main groups and 1 sub-group (A1, A2, B, and C) based upon spatial and textural considerations. Mound groups appear at two different elevations: the 1310 meter elevation (Groups A2, B, and C), and the 1318 meter elevation (Group A1). Published carbon age dating of the Lake Abert 1325 meter strandline and the 1310 meter strandline indicates that the mounds were formed during the Late Pleistocene/Early Holocene. Facies analysis and mineralogical analysis of the mounds indicates that the mounds were primarily formed subaqueously during a lake regression, supporting oxygen isotope data from previous researchers. Magnetometer data within Groups A1 and A2 suggests that the mounds are associated with a series of magnetic lows which are oriented in joint sets (NW-SE, and N-S) which match the orientation of faulting within the region. While there appears to be another early mound building episode, no direct evidence confirms this.
|
Page generated in 0.0459 seconds