Spelling suggestions: "subject:"feedforward"" "subject:"jeedforward""
71 |
Neuronové modelování elektromegnetických polí uvnitř automobilů / Neural Modeling of Electromagnetic Fields in CarsKotol, Martin January 2018 (has links)
Disertační práce se věnuje využití umělých neuronových sítí pro modelování elektromagnetických polí uvnitř automobilů. První část práce je zaměřena na analytický popis šíření elektromagnetických vlny interiérem pomocí Nortonovy povrchové vlny. Následující část práce se věnuje praktickému měření a ověření analytických modelů. Praktická měření byla zdrojem trénovacích a verifikačních dat pro neuronové sítě. Práce se zaměřuje na kmitočtová pásma 3 až 11 GHz a 55 až 65 GHz.
|
72 |
Algebraizace a parametrizace přechodových relací mezi strukturovanými objekty s aplikacemi v oblasti neuronových sítí / Algebraization and Parameterization Transition Relations between Structured Objects with Applications in the Field of Neural NetworksSmetana, Bedřich January 2020 (has links)
The dissertation thesis investigates the modeling of the neural network activity with a focus on a multilayer forward neural network (MLP – Multi Layer Perceptron). In this often used structure of neural networks, time-varying neurons are used, along with an analogy in modeling hyperstructures of linear differential operators. Using a finite lemma and defined hyperoperation, a hyperstructure composed of neurons is defined for a given transient function. There are examined their properties with an emphasis on structures with a layout.
|
73 |
Optimalizace řízení aktivního síťového prvku / Optimization of Active Network Element ControlPřecechtěl, Roman January 2009 (has links)
The thesis deals with the use of neuronal networks for the control of telecommunication network elements. The aim of the thesis is to create a simulation model of network element with switching array with memory, in which the optimization kontrol switching array is solved by means of the neural network. All source code is created in integrated environment MATLAB. To training are used feed-forward backpropagation network. Miss achieve satisfactory result mistakes. Work apposite decision procedure given to problem and it is possible on ni tie up in an effort to find optimum solving.
|
74 |
Modellbasierte Vorsteuerungskonzepte für drehzahlvariable hydraulische Antriebe am Beispiel der Kunststoff-SpitzgießmaschineRadermacher, Tobias 07 February 2022 (has links)
Verdrängergesteuterte hydrostatische Antriebssysteme mit drehzahlvariablem Pumpenantrieb zeichnen sich durch ihre im Vergleich mit ventilgesteuerten Antrieben gute Energieeffizienz und die Möglichkeit der einfachen Stillsetzung aus, weisen jedoch durch die mangelnde Einspannung des Aktors geringere Eigenfrequenzen auf, was die Einstellung von Standardregelkreisen erschwert und meist eine geringere Dynamik und Positioniergenauigkeit zur Folge hat. Hydraulische Achsantriebe, die ohnehin über zahlreiche dominante Nichtlinearitäten verfügen und schwach gedämpft sind können in der Folge das ihnen innewohnende Potential nicht ausschöpfen.
Mit einem Vergleich von Dynamik und Präzision verschiedener Antriebssysteme an Hauptantriebsachsen von Kunststoff-Spritzgießmaschinen mittlerer Baugröße wird zunächst das Leistungspotential analysiert. Auf dieser Basis werden Methoden zur Verbesserung der statischen und dynamischen Eigenschaften drehzahlvariabler verdrängergesteuerter Antriebe in Positions- und Druckregelung entwickelt, welche sich durch eine einfache Parametrierung und hohe Robustheit auszeichnen, da sie ohne einen geschlossenen Regelkreis funktionieren. Die dynamische inversionsbasierte Vorsteuerung ermöglicht dabei ein initial gutes Folgeverhalten, das durch die Anwendung einer iterativ lernenden Regelung in jedem Zyklus weiter verbessert wird. Um die Dynamik von Folgeregelungen mit weiteren Randbedingungen zu maximieren wird eine Methode entwickelt, mit der es möglich ist, eine Bewegungsvorgabe entlang der physikalischen Leistungsgrenzen des Antriebssystems zu berechnen und die wirkenden Begrenzungen aufzuzeigen. Die Erstellung von Bewegungsvorgaben sowie die Einstellung der lernenden Regelung sind dabei jeweils mit einem einzigen Parameter möglich.
Die experimentelle Untersuchung und der Funktionsnachweis der entwickelten Methoden am Beispiel der Kunststoff-Spritzgießmaschine zeigt eine deutliche Steigerung der möglichen Dynamik verdrängergesteuerter Antriebssysteme, ein gutes Folgeverhalten sowie eine erhöhte Positioniergenauigkeit bei gleichzeitiger Unabhängigkeit von der Betriebstemperatur.:1. Einleitung und wissenschaftliche Problemstellung 7
2. Zielsetzung der Arbeit 11
3. Stand der Forschung und Technik 13
3.1 Architekturen hydraulischer Linearantriebe 13
3.2 Betriebsverhalten drehzahlvariabler verdrängergesteuerter Antriebe 16
3.3 Regelung hydraulischer Achsantriebe in Verdrängersteuerung 18
3.4 Vorsteuerungen und iterativ lernende Regelungen 21
4. Antriebstechnik in Kunststoff-Spritzgießmaschinen 25
5. Analyse der Leistungsfähigkeit von Antriebssystemen in SGM 27
5.1 Aufbau und Funktionsweise von Spritzgießmaschinen 28
5.2 Auswahl der Antriebssysteme 31
5.3 Analyse der Bewegungsdynamik 34
5.4 Analyse der Positioniergenauigkeit 37
5.5 Analyse der Druckregelung 39
5.6 Identifikation von Potentialen für die Leistungssteigerung 44
6. Trajektoriengenerierung entlang der Systemleistungsgrenzen 47
6.1 Kniehebel-Schließeinheit 48
6.2 Analyse statischer und dynamischer Restriktionen 50
6.3 Trajektorienentwurfsmethodik 59
7. Modellbasierte dynamische Vorsteuerung 67
7.1 Methodik 68
7.2 Mathematisch-physikalische Beschreibung 69
7.3 Inversionsbasiertes Steuergesetz 75
8. Modellbasierte lernende Vorsteuerung 77
8.1 Methodik 78
8.2 Entwurf modellbasierter normoptimaler iterativ lernender Regelungen 79
8.3 Stabilitätsnachweis 84
8.4 Generierung von Lernmodellen 86
9. Anwendung der Verfahren und Diskussion 91
9.1 Positionsregelung im geschlossenen hydrostatischen Kreis 93
9.2 Lastkraftregelung im offenen Kreis 108
9.3 Ablösende Regelung: Geschwindigkeit - Last 123
10. Zusammenfassung 127
11. Literatur 133
12. Anhang 145 / Displacement-controlled hydrostatic drive systems with variable-speed pump are characterized by their good energy efficiency and the possibility of simple shutdown compared with valve-controlled drives, but they have lower natural frequencies, which makes the application of standard closed-loop control more difficult and usually results in lower dynamics and positioning accuracy. As a result hydraulic drives, which already have numerous dominant nonlinearities and are weakly damped, cannot exploit their full potential.
The work starts with a comparison and an analysis of the dynamics and precision of different drive systems on main drive axes of medium-size plastic injection molding machines. On this basis, methods are developed for improving the static and dynamic properties of variable-speed displacement-controlled drives in position and pressure control. These methods are characterized by simple parameterization and high robustness without relying on a closed-loop control. In this context, the dynamic inversion-based feedforward control allows for a good tracking performance, which is further improved by applying a cycle-wise iterative learning control. In order to fulfill the dynamics of follow-up control with position boundary conditions, a method is developed which allows for calculating a motion specification along the physical performance limits of the drive system and to show the existing limitations. The creation of motion presets as well as the setting-up of a learning controller may be done with one single parameter.
Experimental investigation of the developed methods using the example of the plastic injection molding machine shows a significant increase in dynamics of displacement-controlled drive systems, good follow-up behavior, and increased positioning accuracy while remaining independent of the operating temperature.:1. Einleitung und wissenschaftliche Problemstellung 7
2. Zielsetzung der Arbeit 11
3. Stand der Forschung und Technik 13
3.1 Architekturen hydraulischer Linearantriebe 13
3.2 Betriebsverhalten drehzahlvariabler verdrängergesteuerter Antriebe 16
3.3 Regelung hydraulischer Achsantriebe in Verdrängersteuerung 18
3.4 Vorsteuerungen und iterativ lernende Regelungen 21
4. Antriebstechnik in Kunststoff-Spritzgießmaschinen 25
5. Analyse der Leistungsfähigkeit von Antriebssystemen in SGM 27
5.1 Aufbau und Funktionsweise von Spritzgießmaschinen 28
5.2 Auswahl der Antriebssysteme 31
5.3 Analyse der Bewegungsdynamik 34
5.4 Analyse der Positioniergenauigkeit 37
5.5 Analyse der Druckregelung 39
5.6 Identifikation von Potentialen für die Leistungssteigerung 44
6. Trajektoriengenerierung entlang der Systemleistungsgrenzen 47
6.1 Kniehebel-Schließeinheit 48
6.2 Analyse statischer und dynamischer Restriktionen 50
6.3 Trajektorienentwurfsmethodik 59
7. Modellbasierte dynamische Vorsteuerung 67
7.1 Methodik 68
7.2 Mathematisch-physikalische Beschreibung 69
7.3 Inversionsbasiertes Steuergesetz 75
8. Modellbasierte lernende Vorsteuerung 77
8.1 Methodik 78
8.2 Entwurf modellbasierter normoptimaler iterativ lernender Regelungen 79
8.3 Stabilitätsnachweis 84
8.4 Generierung von Lernmodellen 86
9. Anwendung der Verfahren und Diskussion 91
9.1 Positionsregelung im geschlossenen hydrostatischen Kreis 93
9.2 Lastkraftregelung im offenen Kreis 108
9.3 Ablösende Regelung: Geschwindigkeit - Last 123
10. Zusammenfassung 127
11. Literatur 133
12. Anhang 145
|
75 |
Futuristic Air Compressor System Design and Operation by Using Artificial IntelligenceBahrami Asl, Babak 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The compressed air system is widely used throughout the industry. Air compressors are one of the most costly systems to operate in industrial plants in terms of energy consumption. Therefore, it becomes one of the primary targets when it comes to electrical energy and load management practices. Load forecasting is the first step in developing energy management systems both on the supply and user side. A comprehensive literature review has been conducted, and there was a need to study if predicting compressed air system’s load is a possibility.
System’s load profile will be valuable to the industry practitioners as well as related software providers in developing better practice and tools for load management and look-ahead scheduling programs. Feed forward neural networks (FFNN) and long short-term memory (LSTM) techniques have been used to perform 15 minutes ahead prediction. Three cases of different sizes and control methods have been studied. The results proved the possibility of the forecast. In this study two control methods have been developed by using the prediction. The first control method is designed for variable speed driven air compressors. The goal was to decrease the maximum electrical load for the air compressor by using the system's full operational capabilities and the air receiver tank. This goal has been achieved by optimizing the system operation and developing a practical control method. The results can be used to decrease the maximum electrical load consumed by the system as well as assuring the sufficient air for the users during the peak compressed air demand by users. This method can also prevent backup or secondary systems from running during the peak compressed air demand which can result in more energy and demand savings. Load management plays a pivotal role and developing maximum load reduction methods by users can result in more sustainability as well as the cost reduction for developing sustainable energy production sources. The last part of this research is concentrated on reducing the energy consumed by load/unload controlled air compressors. Two novel control methods have been introduced. One method uses the prediction as input, and the other one doesn't require prediction. Both of them resulted in energy consumption reduction by increasing the off period with the same compressed air output or in other words without sacrificing the required compressed air needed for production. / 2019-12-05
|
76 |
Deep Neural Networks for Context Aware Personalized Music Recommendation : A Vector of Curation / Djupa neurala nätverk för kontextberoende personaliserad musikrekommendationBahceci, Oktay January 2017 (has links)
Information Filtering and Recommender Systems have been used and has been implemented in various ways from various entities since the dawn of the Internet, and state-of-the-art approaches rely on Machine Learning and Deep Learning in order to create accurate and personalized recommendations for users in a given context. These models require big amounts of data with a variety of features such as time, location and user data in order to find correlations and patterns that other classical models such as matrix factorization and collaborative filtering cannot. This thesis researches, implements and compares a variety of models with the primary focus of Machine Learning and Deep Learning for the task of music recommendation and do so successfully by representing the task of recommendation as a multi-class extreme classification task with 100 000 distinct labels. By comparing fourteen different experiments, all implemented models successfully learn features such as time, location, user features and previous listening history in order to create context-aware personalized music predictions, and solves the cold start problem by using user demographic information, where the best model being capable of capturing the intended label in its top 100 list of recommended items for more than 1/3 of the unseen data in an offine evaluation, when evaluating on randomly selected examples from the unseen following week. / Informationsfiltrering och rekommendationssystem har använts och implementeratspå flera olika sätt från olika enheter sedan gryningen avInternet, och moderna tillvägagångssätt beror påMaskininlärrning samtDjupinlärningför att kunna skapa precisa och personliga rekommendationerför användare i en given kontext. Dessa modeller kräver data i storamängder med en varians av kännetecken såsom tid, plats och användardataför att kunna hitta korrelationer samt mönster som klassiska modellersåsom matris faktorisering samt samverkande filtrering inte kan. Dettaexamensarbete forskar, implementerar och jämför en mängd av modellermed fokus påMaskininlärning samt Djupinlärning för musikrekommendationoch gör det med succé genom att representera rekommendationsproblemetsom ett extremt multi-klass klassifikationsproblem med 100000 unika klasser att välja utav. Genom att jämföra fjorton olika experiment,så lär alla modeller sig kännetäcken såsomtid, plats, användarkänneteckenoch lyssningshistorik för att kunna skapa kontextberoendepersonaliserade musikprediktioner, och löser kallstartsproblemet genomanvändning av användares demografiska kännetäcken, där den bästa modellenklarar av att fånga målklassen i sin rekommendationslista medlängd 100 för mer än 1/3 av det osedda datat under en offline evaluering,när slumpmässigt valda exempel från den osedda kommande veckanevalueras.
|
77 |
FUTURISTIC AIR COMPRESSOR SYSTEM DESIGN AND OPERATION BY USING ARTIFICIAL INTELLIGENCEBabak Bahrami Asl (5931020) 16 January 2020 (has links)
<div>The compressed air system is widely used throughout the industry. Air compressors are one of the most costly systems to operate in industrial plants in therms of energy consumption. Therefore, it becomes one of the primary target when it comes to electrical energy and load management practices. Load forecasting is the first step in developing energy management systems both on the supply and user side. A comprehensive literature review has been conducted, and there was a need to study if predicting compressed air system’s load is a possibility. </div><div><br></div><div>System’s load profile will be valuable to the industry practitioners as well as related software providers in developing better practice and tools for load management and look-ahead scheduling programs. Feed forward neural networks (FFNN) and long short-term memory (LSTM) techniques have been used to perform 15 minutes ahead prediction. Three cases of different sizes and control methods have been studied. The results proved the possibility of the forecast. In this study two control methods have been developed by using the prediction. The first control method is designed for variable speed driven air compressors. The goal was to decrease the maximum electrical load for the air compressor by using the system's full operational capabilities and the air receiver tank. This goal has been achieved by optimizing the system operation and developing a practical control method. The results can be used to decrease the maximum electrical load consumed by the system as well as assuring the sufficient air for the users during the peak compressed air demand by users. This method can also prevent backup or secondary systems from running during the peak compressed air demand which can result in more energy and demand savings. Load management plays a pivotal role and developing maximum load reduction methods by users can result in more sustainability as well as the cost reduction for developing sustainable energy production sources. The last part of this research is concentrated on reducing the energy consumed by load/unload controlled air compressors. Two novel control methods have been introduced. One method uses the prediction as input, and the other one doesn't require prediction. Both of them resulted in energy consumption reduction by increasing the off period with the same compressed air output or in other words without sacrificing the required compressed air needed for production.</div><div><br></div>
|
78 |
Conception et test de cellules de gestion d'énergie à commande numérique en technologies CMOS avancées / Design and test of digitally-controlled power management IPs in advanced CMOS technologiesLi, Bo 07 May 2012 (has links)
Les technologies avancées de semi-conducteur permettent de mettre en œuvre un contrôleur numérique dédié aux convertisseurs à découpage, de faible puissance et de fréquence de découpage élevée sur FPGA et ASIC. Cette thèse vise à proposer des contrôleurs numériques des performances élevées, de faible consommation énergétique et qui peuvent être implémentés facilement. En plus des contrôleurs numériques existants comme PID, RST, tri-mode et par mode de glissement, un nouveau contrôleur numérique (DDP) pour le convertisseur abaisseur de tension est proposé sur le principe de la commande prédictive: il introduit une nouvelle variable de contrôle qui est la position de la largeur d'impulsion permettant de contrôler de façon simultanée le courant dans l'inductance et la tension de sortie. La solution permet une dynamique très rapide en transitoire, aussi bien pour la variation de la charge que pour les changements de tension de référence. Les résultats expérimentaux sur FPGA vérifient les performances de ce contrôleur jusqu'à la fréquence de découpage de 4MHz. Un contrôleur numérique nécessite une modulation numérique de largeur d'impulsion (DPWM). L'approche Sigma-Delta de la DPWM est un bon candidat en ce qui concerne le compromis entre la complexité et les performances. Un guide de conception d'étage Sigma-Delta pour le DPWM est présenté. Une architecture améliorée de traditionnelles 1-1 MASH Sigma-Delta DPWM est synthétisée sans détérioration de la stabilité en boucle fermée ainsi qu'en préservant un coût raisonnable en ressources matérielles. Les résultats expérimentaux sur FPGA vérifient les performances des DPWM proposées en régimes stationnaire et transitoire. Deux ASICs sont portés en CMOS 0,35µm: le contrôleur en tri-mode pour le convertisseur abaisseur de tension et la commande par mode de glissement pour les convertisseurs abaisseur et élévateur de tension. Les bancs de test sont conçus pour conduire à un modèle d'évaluation de consommation énergétique. Pour le contrôleur en tri-mode, la consommation de puissance mesurée est seulement de 24,56mW/MHz lorsque le ratio de temps en régime de repos (stand-by) est 0,7. Les consommations de puissance de command par mode de glissement pour les convertisseurs abaisseur et élévateur de tension sont respectivement de 4,46mW/MHz et 4,79mW/MHz. En utilisant le modèle de puissance, une consommation de la puissance estimée inférieure à 1mW/MHz est envisageable dans des technologies CMOS plus avancées. Comparé aux contrôlés homologues analogiques de l'état de l'art, les prototypes ASICs illustrent la possibilité d'atteindre un rendement comparable pour les applications de faible et de moyen puissance mais avec l'avantage d'une meilleure précision et une meilleure flexibilité. / Owing to the development of modern semiconductor technology, it is possible to implement a digital controller for low-power high switching frequency DC-DC power converter in FPGA and ASIC. This thesis is intended to propose digital controllers with high performance, low power consumption and simple implementation architecture. Besides existing digital control-laws, such as PID, RST, tri-mode and sliding-mode (SM), a novel digital control-law, direct control with dual-state-variable prediction (DDP control), for the buck converter is proposed based on the principle of predictive control. Compared to traditional current-mode predictive control, the predictions of the inductor current and the output voltage are performed at the same time by adding a control variable to the DPWM signal. DDP control exhibits very high dynamic transient performances under both load variations and reference changes. Experimental results in FPGA verify the performances at switching frequency up to 4MHz. For the boost converter exhibiting more serious nonlinearity, linear PID and nonlinear SM controllers are designed and implemented in FPGA to verify the performances. A digital control requires a DPWM. Sigma-Delta DPWM is therefore a good candidate regarding the implementation complexity and performances. An idle-tone free condition for Sigma-Delta DPWM is considered to reduce the inherent tone-noise under DC-excitation compared to the classic approach. A guideline for Sigma-Delta DPWM helps to satisfy proposed condition. In addition, an 1-1 MASH Sigma-Delta DPWM with a feasible dither generation module is proposed to further restrain the idle-tone effect without deteriorating the closed-loop stability as well as to preserve a reasonable cost in hardware resources. The FPGA-based experimental results verify the performances of proposed DPWM in steady-state and transient-state. Two ASICs in 0.35µm CMOS process are implemented including the tri-mode controller for buck converter and the PID and SM controllers for the buck and boost converters respectively. The lab-scale tests are designed to lead to a power assessment model suggesting feasible applications. For the tri-mode controller, the measured power consumption is only 24.56mW/MHz when the time ratio of stand-by operation mode is 0.7. As specific power optimization strategies in RTL and system-level are applied to the latter chip, the measured power consumptions of the SM controllers for buck converter and boost converter are 4.46mW/MHz and 4.79mW/MHz respectively. The power consumption is foreseen as less than 1mW/MHz when the process scales down to nanometer technologies based on the power-scaling model. Compared to the state-of-the-art analog counterpart, the prototype ICs are proven to achieve comparable or even higher power efficiency for low-to-medium power applications with the benefit of better accuracy and better flexibility.
|
Page generated in 0.037 seconds