Spelling suggestions: "subject:"tilleller denprozess"" "subject:"tilleller messprozess""
1 |
Affine processes and applications in financeDuffie, D., Filipovic, D., Schachermayer, Walter January 2001 (has links) (PDF)
We provide the definition and a complete characterization of regular affine processes. This type of process unifies the concepts of continuous-state branching processes with immigration and Ornstein-Uhlenbeck type processes. We show, and provide foundations for, a wide range of financial applications for regular affine processes. (author's abstract) / Series: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
2 |
Probability and Heat Kernel Estimates for Lévy(-Type) ProcessesKühn, Franziska 05 December 2016 (has links) (PDF)
In this thesis, we present a new existence result for Lévy-type processes. Lévy-type processes behave locally like a Lévy process, but the Lévy triplet may depend on the current position of the process. They can be characterized by their so-called symbol; this is the analogue of the characteristic exponent in the Lévy case. Using a parametrix construction, we prove the existence of Lévy-type processes with a given symbol under weak regularity assumptions on the regularity of the symbol. Applications range from existence results for stable-like processes and mixed processes to uniqueness results for Lévy-driven stochastic differential equations.
Moreover, we discuss sufficient conditions for the existence of moments of Lévy-type processes and derive estimates for fractional moments.
|
3 |
Probability and Heat Kernel Estimates for Lévy(-Type) ProcessesKühn, Franziska 25 November 2016 (has links)
In this thesis, we present a new existence result for Lévy-type processes. Lévy-type processes behave locally like a Lévy process, but the Lévy triplet may depend on the current position of the process. They can be characterized by their so-called symbol; this is the analogue of the characteristic exponent in the Lévy case. Using a parametrix construction, we prove the existence of Lévy-type processes with a given symbol under weak regularity assumptions on the regularity of the symbol. Applications range from existence results for stable-like processes and mixed processes to uniqueness results for Lévy-driven stochastic differential equations.
Moreover, we discuss sufficient conditions for the existence of moments of Lévy-type processes and derive estimates for fractional moments.
|
Page generated in 0.0424 seconds