Spelling suggestions: "subject:"fenichel"" "subject:"benichel""
1 |
Méthodes de variétés invariantes pour les équations de Saint Venant et les systèmes hamiltoniens discretsNOBLE, Pascal 18 December 2003 (has links) (PDF)
Dans cette thèse, on analyse par des méthodes de variétés invariantes deux problèmes distincts: le phénomène des roll-waves en hydraulique et l'existence de breathers discrets dans des réseaux non linéaires discrets. Les roll-waves sont des ondes progressives périodiques et discontinues solutions entropiques des équations de Saint Venant. Grace aux théorèmes de Fenichel, on montre l'existence de roll-waves continues "visqueuses" proches des roll-waves discontinues lorsqu'on ajouté aux équations un petit terme de viscosité. On étudie ensuite la stabilité linéaire de ces roll-waves discontinues. Enfin, on montre l'existence de roll-waves de petite amplitude dans des canaux à fond périodiques.\\ Les breathers discrets sont des oscillations périodiques, localisées en espace dans des réseaux non linéaires discrets. On analyse d'abord le modèle Fermi-Pasta-Ulam (FPU) diatomique. En formulant le problème sous la forme d'un mapping en dimension infinie, on montre, via une réduction à une variété centrale, l'existence de breathers discrets de petite amplitude pour des rapports de masses arbitraires. On utilise aussi cette approche pour montrer l'existence de breathers discrets dans des chaines de spins ferromagnétiques.
|
2 |
Kink-like solutions for the FPUT lattice and the mKdV as a modulation equationNorton, Trevor 24 July 2024 (has links)
The Fermi-Pasta-Ulam-Tsingou (FPUT) lattice became of great mathematical interest when it was observed that it exhibited a near-recurrence of its initial condition, despite it being a nonlinear system. This behavior was explained by showing that the Korteweg-de Vries (KdV) equation serves as a continuum limit for the FPUT and has soliton solutions. Much work has been done into analyzing the solitary wave solutions of the FPUT and the relationship between the lattice and its continuum limit. For certain potentials the modified KdV (mKdV) instead serves as the continuum limit for the FPUT. However, there has been little research done to examine how the defocusing mKdV can be used a modulation equation for the FPUT or how the kink solutions of the mKdV relate to solutions of the FPUT. This thesis first addresses the existence of kink-like solutions of the FPUT and shows that their profiles can be approximated by the profiles of the kink solutions of the mKdV. Next, it is shown that the defocusing mKdV can be used more widely as a modulation equation for small-amplitude, long-wavelength solutions of the FPUT lattice. Finally, the issue of stability of the kink-like solutions is discussed, and some results toward linear stability are given.
|
Page generated in 0.0358 seconds