• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 65
  • 51
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 288
  • 115
  • 69
  • 46
  • 42
  • 40
  • 39
  • 39
  • 33
  • 31
  • 29
  • 26
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Elektronenspinresonanz in Yb-basierten Kondogitter-Systemen

Wykhoff, Jan 07 July 2010 (has links)
Die Elektronenspinresonanz (ESR) untersucht die im quasistatischen Magnetfeld resonante Absorption eines an die Probe angelegten Mikrowellenmagnetfeldes. Es wurde das System Yb1-w A1-w (Rh1-x Cox)2 (Si1-y Gey) 2 mit A=La, bzw. Lu, sowie das System YbIr2Si2 mittels ESR untersucht. Unter Kondo-Wechselwirkung vieler Leitungselektronen mit einem lokalen 4f-Moment des Kondo-Ions bildet sich ein nicht-magnetisches Grundzustands-Singlett, was zur Abschirmung des magnetischen Moments führt. YbRh2Si2 ist das erste Schwere-Fermionen-System mit Kondo-Ionen, das ohne Dotierung zusätzlicher ESR-Sonden ein ESR-Signal unterhalb der Kondo-Temperatur aufweist. Es zeigt sich, dass das ESR-Signal nicht mittels gängiger ESR-Theorien konsistent beschrieben werden kann. Die Messungen, die im Rahmen dieser Arbeit angestellt wurden, flossen in die Entwicklung von weiterführenden Theorien (z.B. [1], [2]) ein. Die Temperaturabhängigkeit des ESR-g-Faktors konnte damit erfolgreich beschrieben werden, womit erstmals der Nachweis einer Kondo-Wechselwirkung in Kondo-Gitter-Systemen mittels ESR gelang. Ferner konnte die Bedeutung von ferromagnetischen Fluktuationen für eine kleine, beobachtbare Linienbreite beschrieben werden. Der ESR-Methode ist somit die Kondo-Spindynamik direkt zugänglich. Dieser Zugang ist neu und einzigartig, denn andere Methoden (NMR, inelastische Neutronenstreuung) charakterisieren die Kondo-Spindynamik auf indirekte Weise. [1] P. Wölfle und E. Abrahams. Phenomenology of esr in heavy-fermion systems: Fermi-liquid und nicht-fermi-liquid regimes Phys. Rev. B, 80(23): 235112, 2009. [2] B. I. Kochelaev, S. I. Belov, A. M. Skvortsova, A. S. Kutusov, J. Sichelschmidt, J. Wykhoff, C. Geibel und F. Steglich. Why could electron spin resonance be observed in a heavy fermion kondo lattice? Eur. Phys. J. B, 72(4): 485, 2009.
252

Untersuchung der magnetischen Eigenschaften von CeCu2(Si1-xGex)2 mittels Neutronenstreuung

Faulhaber, Enrico 22 February 2008 (has links)
1979 wurde mit CeCu2Si2 erstmalig ein Schwere-Fermionen-Supraleiter entdeckt. Diese Verbindung, entdeckt von Steglich und Mitarbeitern, befindet sich nahe an einem quantenkritischen Punkt, an dem die magnetische Ordnung gerade unterdrückt wird. Der Abstand zu diesem Punkt kann sowohl durch Druck als auch durch Germaniumsubstitution auf dem Siliziumplatz variiert werden. Dabei treten neben der Supraleitung in CeCu2Si2 auch verschiedene magnetische Phasen bei höherem Germaniumgehalt auf. CeCu2Si2 ordnet magnetisch unterhalb von TN = 0.8 K in einer Spindichtewelle, während das Schwere-Fermionen-System CeCu2Ge2 unterhalb von TN = 4.1 K antiferromagnetisch ordnet. In dieser Arbeit wurde die Substitutionsreihe CeCu2(Si1-xGex)2 mittels Neutronendiffraktion untersucht. Ausgehend von Proben mit hohem Germaniumgehalt von x = 0.45, deren magnetische Struktur detailliert untersucht wurde, wurden schrittweise die Eigenschaften von Proben mit kleinerem x erschlossen, um schließlich die (bis dato unbekannte) magnetische Struktur in CeCu2Si2 aufzuklären. Weiterhin wurden Untersuchungen zumWechselspiel zwischenMagnetismus und Supraleitung durchgeführt. Hierzu wurde mit einem selbstentwickelten Aufbau dieWechselfeldsuszeptibilität simultan zu den Diffraktionsexperimenten aufgezeichnet. Durch die direkte Korrelation konnte nachgewiesen werden, dass in CeCu2Si2 keine mikroskopische Koexistenz von Supraleitung und magnetischer Ordnung vorliegt, sondern mikroskopische Phasenseparation. - Die Arbeit ist auch über den Cuvillier-Verlag; Nonnenstieg 8; 37075 Göttingen mit der ISBN 978-3-86727-587-3 erhältlich. / In 1979 the first heavy-fermion superconductor CeCu2Si2 was discovered by Steglich et al. The system is near a quantum critical point (QCP), where the magnetic order is just suppressed. The distance to the QCP can be variied with hydrostatic pressure as well as by germanium substitution on the silicon site. Next to the superconductivity in CeCu2Si2 one finds distinct magnetic phases while increasing the germanium content. CeCu2Si2 shows a magnetic order of a spin-density-type below TN = 0.8 K, whereas the heavy fermion system CeCu2Ge2 orders below TN = 4.1 K as an antiferromagnet. The focus of this thesis is on neutron-diffraction in the system CeCu2(Si1-xGex)2. Starting with a sample with a high germanium content of x = 0.45, the magnetic structures are investigated in detail. Following a step-by-step approach, samples with reduced x are investigated subsequently to figure out the properties of pure CeCu2Si2, which were not accessible before. Furthermore, the complex interaction between magnetism and superconductivity is investigated in detail. Using a specially designed setup, the ac-susceptibility could be recorded simultaneously during the neutron diffraction experiments. Due to the direct correlation between antiferromagnetic signals and diamagnetic features, the microscopic coexistence of superconductivity and magnetic order can be ruled out. Instead, a phase separation on the microscopic scale is found. - The thesis is also available from the publisher Cuvillier-Verlag; Nonnenstieg 8; 37075 Göttingen under the ISBN 978-3-86727-587-3.
253

Hard-core bosons in phase diagrams of 2D Lattice Gauge Theories and Bosonization of Dirac Fermions

Mantilla Serrano, Sebastian Felipe 27 February 2023 (has links)
Hard-core bosons are versatile and useful in describing several physical systems due to their one-to-one mapping with spin-1/2 operators. We propose two frameworks where hard-core boson mapping not only reduces the complexity of the original problem, but also captures important features of the physics of the original system that would have implied high-computational procedures with not much profound insight in the mechanisms behind its behavior. The first case study comprising part i is an approach to the description of the phases 2D Lattice Gauge Theories, the Quantum 6-Vertex Model and the Quantum Dimer Model using one fluctuating electric string as an 1D precursor of the whole 2D systems[HAMS19]. Both models and consequently the string are described by the Rokhsar-Kivelson Hamiltonian with parameter v measuring the competition of potential versus kinetic terms. The string can be mapped one-to-one onto a 1D system of hard-core bosons that can be solved exactly for the Quantum 6-Vertex Model, and offers footprints of the phase diagram of the Quantum Dimer Model in the region close to the Rokhsar-Kivelson point v = 1, especially when |v| ≤ 1. The second case study we have discussed in part ii is an extension of higher-dimensional bosonization techniques in Landau Fermi liquids to the case of nodal semimetals where the Fermi surface shrinks to a point, so the description of particle-hole interactions as fluctuations of the Fermi surface is not available [MS20]. Additionaly, we focus our analysis on the Q = 0 sector where the electron and the hole have opposite momenta ±k, so they are mapped into a hard-core boson located at a site k in the reciprocal lattice. To test our extension we calculate nonperturbative corrections to the optical conductivity of 2D Dirac fermions with electron-electron interactins described as a Coulomb potential, obtaining results consistent to the literature and the experimental reports where corrections are small even in strong coupling regimes. Part iii discusses further ideas derived from parts i and ii, including a brief discussion on addressing the weak coupling instability in bilayer graphene using the bosonization extension that offers a picture of hard-core bosons describing Q = 0 excitons that undergo a Bose-Einstein condensation resulting in a ground state adiabatically disconnected from the noninteracting case.:1 Introduction 1 1.1 Quantum link models and fluctuating electric strings 2 1.2 Bosonization of Particle-hole excitations in 2D Dirac fermions 7 1.3 Structure of the document 11 i. Quantum link models and fluctuating electric strings 2. A Brief Introduction to Lattice Gauge Theories 15 2.1 Continuous formulation of U(1) gauge theories 15 2.1.1 Gauge field equations 16 2.1.2 Gauss’ law as generator of the gauge transformations 18 2.2 U(1) gauge theories on a lattice 19 2.2.1 Gauge field Hamiltonian 20 2.2.2 Cylindrical algebra from LGT 20 2.2.3 Generator of gauge transformations 21 2.3 Abelian Quantum Link Model 22 2.3.1 Quantum Link Models (QLMs) with S = 1 / 2 23 2.3.2 ’t Hooft operators and winding number sectors 24 2.3.3 Construction of the QLM Hamiltonian 26 2.4 Conclusions 28 3. Electric string in Q6VM as a XXZ chain 29 3.1 Realization of the Q6VM in the S = 1 / 2 QLM 31 3.2 Mapping the electric string to the XXZ chain 32 3.3 Phases of the electric string from the XXZ chain 33 3.3.1 v > 1: FM insulator 34 3.3.2 v = 1: RK point 36 3.3.3 −1 < v < 1: Gapless phase 36 3.3.4 v ≤ −1: KT transition and AFM insulator 37 3.4 Numerical approach: Drude Weight and system size effects 38 3.5 Summary and Discussion 40 4. Electric line in the QDM as a hard-core boson two-leg ladder 41 4.1 Realization of the QDM in the S = 1/ 2 QLM 42 4.2 Construction of an electric string in the QDM 43 4.3 Mapping the electric string in QDM to a two-leg ladder 45 4.3.1 QLM in a triangular lattice 45 4.3.2 From the triangular lattice to the two-leg ladder 45 4.3.3 Construction of the 1D bosonic Hamiltonian 46 4.4 Phases of the electric string from the bosonic two-leg ladder 48 4.4.1 Left Hand Side (LHS) of the Rokhsar-Kivelson (RK) point: Charge Density Wave (CDW) states 48 4.4.2 Right Hand Side (RHS) of the RK point: phase-separated states 50 4.5 Numerical approach: Drude Weight and system size effects 51 4.6 Summary and Discussion 52 ii Bosonization of particle-hole excitations in 2D Dirac fermions 5 Graphene in a nutshell 57 5.1 Origin of the hexagonal structure 57 5.1.1 Hybrid orbitals in C 58 5.1.2 Honeycomb lattice 60 5.2 Tight-binding approach 61 5.2.1 Hopping and overlapping matrices in Nearest Neighbor (NN) approximation 62 5.2.2 Dispersion relation for π electrons 62 5.3 Effective 2D Dirac Fermion Hamiltonian 64 5.4 Electron-electron interactions 65 6 Bosonization of the Q = 0 continuum of Dirac Fermions 67 6.1 Effective Hamiltonian and Hilbert space 69 6.2 Effective Heisenberg Hamiltonian 70 6.3 Quadratic Bosonic Hamiltonian 71 6.4 Connection to diagramatic perturbation theory 73 6.5 Parametrization of the reciprocal space 74 6.5.1 Coordinate transformation 74 6.5.2 Polar parametrization 75 6.5.3 Angular momentum channels 75 6.6 Discussion and Summary 76 7 Non-perturbative corrections to the Optical Conductivity of 2D Dirac Fermions 77 7.1 Optical Conductivity 79 7.1.1 Bosonized current operator and susceptibility 79 7.1.2 Susceptibility in terms of the eigenstates 80 7.1.3 Regularization of the Lehman representation 81 7.2 Numerical approach: IR regularization and system size effects 82 7.2.1 Discretization size dependence 82 7.2.2 Dependence on the IR cutoff 83 7.2.3 Comparison of numerical results with corrections from first order perturbation theory 84 7.2.4 Optical conductivity for several coupling constants 85 7.3 Discussion and Summary 86 iii Weak coupling instability, New Perspectives & Conclusions 8 Weak coupling instability in bilayer graphene from a bosonization picture 91 8.1 Band structure of Bernal-stacked bilayer graphene 92 8.2 Generalization of the effective Hamiltonian of graphene 93 8.2.1 Density of states in monolayer and bilayer graphene 94 8.2.2 Projection onto Q = 0 sector and effective Heisenberg pseudospin Hamiltonian 95 8.2.3 Zeeman vortex coordinates and HCB operators 95 8.2.4 Bogoliubov-Valatin basis 97 8.3 Interaction potentials 97 8.4 BCS instability in pseudospin picture 99 8.5 Numerical procedure 101 8.5.1 Numerical BCS instability 101 8.5.2 Functional form of the instability 101 8.5.3 Comparison to the instability from BCS theory 105 8.6 Conclusions 105 9 Conclusions 107 iv Appendices A. Yang & Yang’s expressions of ground state energy of XXZ Chain using Bethe Ansatz 115 A.1 Bethe Ansatz 115 A.2 Explicit formulas for f ( ∆, 0 ) 116 B. Kadanoff-Baym (KB) self-consistent Hartree-Fock (SCHF) approximation 119 B.1 Details of connection to perturbation theory 119 B.1.1 Bare and dressed fermion propagators 119 B.1.2 Bethe-Salpeter ladder 120 B.1.3 Particle-hole propagator and comparison to HP boson propagator 121 C, Optical Conductivity from Pseudospin precession 123 C.1 Minimal coupling and band (electron-hole) basis 123 C.2 Equations of motion of charge and pseudospin densities 124 C.3 Optical Conductivity from Fermi-Dirac distributions at finite temperature 124 D. Momentum space reparametrization 127 D.1 General coordinate transformations on the continuum limit 127 D.2 Polar re-discretization 129 D.3 Angular momentum channels 130 D.4 Selection of the radial parametrization 130 Bibliography 133
254

<b>TOPOLOGICAL AND QUANTUM TRANSPORT IN CHIRAL TWO-DIMENSIONAL TELLURIUM</b>

Chang Niu (18109696) 06 March 2024 (has links)
<p dir="ltr"><b>Tellurium (Te) stands out as an elemental narrow-bandgap semiconductor characterized by its distinctive chiral crystal structure. The interplay between fundamental symmetries and the topological properties of electrons has garnered significant attention in the scientific community. With its unique chiral crystal structure featuring three Tellurium atoms spiraling within a single unit cell, Tellurium offers a singular material system. This system provides an exceptional opportunity to explore the novel quantum and topological transport properties of electrons. Hydrothermally grown two-dimensional (2D) Te with a thickness of several nanometers gives us an opportunity to precisely control the carrier density and the carrier type in Te using gate voltage. In this dissertation, the spin-orbit coupling (SOC) of Te is quantitatively analyzed using the weak anti-localization effect. The strong SOC also gives rise to the Weyl point at the band edge of the conduction band. The topological nontrivial band structure of Te is characterized by a π phase shift in the Shubnikov-de Haas (SdH) oscillations. Due to the high mobility, the quantum Hall effect is measured with low spin and valley Landau levels controlled by an electric and magnetic field. Bilayer charge transferable quantum Hall states of Weyl fermions is observed in a wide Te quantum well. The topological phase transition from a semiconductor to Weyl semimetal under high pressure is studied up to 2.47 GPa. The chirality of 2D Te is separated by the hot sulfuric acid etching technique. The spin configuration and topological charge of the Weyl node exhibit a reversal in different chiralities, leading to an inverse in nonlinear responses, encompassing both electrical (nonreciprocal transport in the longitudinal direction and nonlinear planar Hall effect in the transvers direction) and optical phenomena (circular photogalvanic effect and circular photovoltaic effect). Our results unveil the topological nature of the Tellurium (Te) band structures, offering a promising avenue for controlling charge and spin transport within the chiral degree of freedom.</b></p>
255

Electronic and Spin Transport in Dirac-Like Systems

Asmar, Mahmoud M. 17 September 2015 (has links)
No description available.
256

Modern Electronic Structure Theory using Tensor Product States

Abraham, Vibin 11 January 2022 (has links)
Strongly correlated systems have been a major challenge for a long time in the field of theoretical chemistry. For such systems, the relevant portion of the Hilbert space scales exponentially, preventing efficient simulation on large systems. However, in many cases, the Hilbert space can be partitioned into clusters on the basis of strong and weak interactions. In this work, we mainly focus on an approach where we partition the system into smaller orbital clusters in which we can define many-particle cluster states and use traditional many-body methods to capture the rest of the inter-cluster correlations. This dissertation can be mainly divided into two parts. In the first part of this dissertation, the clustered ansatz, termed as tensor product states (TPS), is used to study large strongly correlated systems. In the second part, we study a particular type of strongly correlated system, correlated triplet pair states that arise in singlet fission. The many-body expansion (MBE) is an efficient tool that has a long history of use for calculating interaction energies, binding energies, lattice energies, and so on. We extend the incremental full configuration interaction originally proposed for a Slater determinant to a tensor product state (TPS) based wavefunction. By partitioning the active space into smaller orbital clusters, our approach starts from a cluster mean-field reference TPS configuration and includes the correlation contribution of the excited TPSs using a many-body expansion. This method, named cluster many-body expansion (cMBE), improves the convergence of MBE at lower orders compared to directly doing a block-based MBE from an RHF reference. The performance of the cMBE method is also tested on a graphene nano-sheet with a very large active space of 114 electrons in 114 orbitals, which would require 1066 determinants for the exact FCI solution. Selected CI (SCI) using determinants becomes intractable for large systems with strong correlation. We introduce a method for SCI algorithms using tensor product states which exploits local molecular structure to significantly reduce the number of SCI variables. We demonstrate the potential of this method, called tensor product selected configuration interaction (TPSCI), using a few model Hamiltonians and molecular examples. These numerical results show that TPSCI can be used to significantly reduce the number of SCI variables in the variational space, and thus paving a path for extending these deterministic and variational SCI approaches to a wider range of physical systems. The extension of the TPSCI algorithm for excited states is also investigated. TPSCI with perturbative corrections provides accurate excitation energies for low-lying triplet states with respect to extrapolated results. In the case of traditional SCI methods, accurate excitation energies are obtained only after extrapolating calculations with large variational dimensions compared to TPSCI. We provide an intuitive connection between lower triplet energy mani- folds with Hückel molecular orbital theory, providing a many-body version of Hückel theory for excited triplet states. The n-body Tucker ansatz (which is a truncated TPS wavefunction) developed in our group provides a good approximation to the low-lying states of a clusterable spin system. In this approach, a Tucker decomposition is used to obtain local cluster states which can be truncated to prune the full Hilbert space of the system. As a truncated variational approach, it has been observed that the self-consistently optimized n-body Tucker method is not size- extensive, a property important for many-body methods. We explore the use of perturbation theory and linearized coupled-cluster methods to obtain a robust yet efficient approximation. Perturbative corrections to the n-body Tucker method have been implemented for the Heisenberg Hamiltonian and numerical data for various lattices and molecular systems has been presented to show the applicability of the method. In the second part of this dissertation, we focus on studying a particular type of strongly correlated states that occurs in singlet fission material. The correlated triplet pair state 1(TT) is a key intermediate in the singlet fission process, and understanding the mechanism by which it separates into two independent triplet states is critical for leveraging singlet fission for improving solar cell efficiency. This separation mechanism is dominated by two key interactions: (i) the exchange interaction (K) between the triplets which leads to the spin splitting of the biexciton state into 1(TT),3(TT) and 5(TT) states, and (ii) the triplet-triplet energy transfer integral (t) which enables the formation of the spatially separated (but still spin entangled) state 1(T...T). We develop a simple ab initio technique to compute both the triplet-triplet exchange (K) and triplet-triplet energy transfer coupling (t). Our key findings reveal new conditions for successful correlated triplet pair state dissociation. The biexciton exchange interaction needs to be ferromagnetic or negligible compared to the triplet energy transfer for favorable dissociation. We also explore the effect of chromophore packing to reveal geometries where these conditions are achieved for tetracene. We also provide a simple connectivity rule to predict whether the through-bond coupling will be stabilizing or destabilizing for the (TT) state in covalently linked singlet fission chromophores. By drawing an analogy between the chemical system and a simple spin-lattice, one is able to determine the ordering of the multi-exciton spin state via a generalized usage of Ovchinnikov's rule. In the case of meta connectivity, we predict 5(TT) to be formed and this is later confirmed by experimental techniques like time-resolved electron spin resonance (TR-ESR). / Doctor of Philosophy / The study of the correlated motion of electrons in molecules and materials allows scientists to gain useful insights into many physical processes like photosynthesis, enzyme catalysis, superconductivity, chemical reactions and so on. Theoretical quantum chemistry tries to study the electronic properties of chemical species. The exact solution of the electron correlation problem is exponentially complex and can only be computed for small systems. Therefore, approximations are introduced for practical calculations that provide good results for ground state properties like energy, dipole moment, etc. Sometimes, more accurate calculations are required to study the properties of a system, because the system may not adhere to the as- sumptions that are made in the methods used. One such case arises in the study of strongly correlated molecules. In this dissertation, we present methods which can handle strongly correlated cases. We partition the system into smaller parts, then solve the problem in the basis of these smaller parts. We refer to this block-based wavefunction as tensor product states and they provide accurate results while avoiding the exponential scaling of the full solution. We present accurate energies for a wide variety of challenging cases, including bond breaking, excited states and π conjugated molecules. Additionally, we also investigate molecular systems that can be used to increase the efficiency of solar cells. We predict improved solar efficiency for a chromophore dimer, a result which is later experimentally verified.
257

Propriétés de transport électronique des isolants topologiques / Electronic transport properties of topological insulators

Adroguer, Pierre 15 February 2013 (has links)
Les travaux présentés dans cette thèse ont pour objectif d’apporter à la physique mésoscopique un éclairage concernant la compréhension des propriétés de transport électroniques d’une classe de matériaux récemment découverts : les isolants topologiques.La première partie de ce manuscrit est une introduction aux isolants topologiques, mettant en partie l’accent sur leurs spécificités par rapport aux isolants "triviaux" : des états de bords hélicaux (dans le cas de l’effet Hall quantique de spin en 2 dimensions) ou de surface relativistes (pour les isolants topologiques tridimensionnels) robustes vis-à-vis du désordre.La deuxième partie propose une sonde de l’hélicité des états de bords de l’effet Hall quantique de spin en étudiant les propriétés remarquables de l’injection de paires de Cooper dans cette phase topologique.La troisième partie étudie la diffusion des états de surface des isolants topologiques tridimensionnels dans le régime cohérent de phase. L’étude de la diffusion, de la correction quantique à la conductance (antilocalisation faible) et de l’amplitude des fluctuations universelles de conductance de fermions de Dirac sans masse est présentée. Cette étude est aussi menée dans la cas d’états de surface dont la surface de Fermi présente la déformation hexagonale observée expérimentalement. / The works presented in this thesis intend to contribute to condensed matter physics in the understanding of the electronic properties of a recently discovered class of materials : the topological insulators.The first part of this memoir is an introduction to topological insulators, focusing on their specifities compared to "trivial" insulators : helical edge states (in the two dimensional quantum spin Hall effect) or relativistic surface states (for three dimensional topological insulators) both robust agiant disorder.The second part proposes a new way to probe the unique properties of the helical edge states of quantum spin Hall effect via the injection of Cooper pair from a superconductor.The third part deals with the diffusion of the three dimensional topological insulator surface states, in the phase coherent regime. The diffusion, the quantum correction to conductivity, and the amplitude of the universal conductance fluctuations are studied. This study is also led in the experimentally relevant case where the Fermi surface presents a hexagonal deformation.
258

Conductivité pour des fermions de Dirac près d’un point critique quantique

Martin, Simon 08 1900 (has links)
Les matériaux de Dirac constituent une classe intéressante de systèmes pouvant subir une transition de phase quantique à température nulle, lorsqu’un paramètre non-thermique atteint un point critique quantique. À l’approche d’un tel point, les observables physiques sont affectées par les importantes fluctuations thermiques et quantiques. Dans ce mémoire, on utilise des techniques de théorie conforme des champs afin d’étudier le tenseur de conductivité électrique dans des théories en 2 + 1 dimensions contenant des fermions de Dirac près d’un point critique quantique. À basse énergie, ces dernières décrivent de façon adéquate de nombreux matériaux de Dirac ainsi que leur transition de phase quantique. La conductivité est étudiée dans le régime des hautes fréquences, à température non-nulle et lorsque le paramètre non-thermique est près de sa valeur critique. Dans ce projet, l’emphase est mise sur les points critiques quantiques invariants sous la parité et le renversement du temps. Dans ce cas, l’expansion de produit d’opérateurs (Operator product expansion en anglais) ainsi que la théorie des perturbations conforme permettent d’obtenir une expression générale pour l’expansion à grandes fréquences des conductivités longitudinales et transverses (de Hall) lorsque le point critique quantique est déformé par un opérateur scalaire relevant. Grâce à ces dernières, nous sommes en mesure de déduire des règles de somme exactes pour ces deux quantités. À titre d’exemple, nos résultats généraux sont appliqués dans le cadre du modèle interagissant de Gross-Neveu, où nous obtenons l’expansion des deux conductivités ainsi que les règles de somme pour un nombre de saveurs de fermions de Dirac N arbitraire. Ces mêmes expressions sont ensuite obtenues par un calcul explicite à N = infini, permettant la comparaison avec les résultats pour un N quelconque. Par la suite, des résultats généraux similaires sont obtenus dans le cas où le point critique quantique est déformé par un opérateur pseudoscalaire relevant. Ces derniers sont finalement appliqués à une théorie de fermions de Dirac libres perturbée par un terme de masse. / Dirac materials constitute an interesting class of systems that can undergo a quantum phase transition at zero temperature, when a non-thermal parameter reaches a quantum critical point. As we approach such a point, physical observables are altered by the important thermal and quantum fluctuations. In this thesis, conformal field theory techniques are used to study the electrical conductivity tensor in theories with Dirac fermions in 2+1 dimensions close to a quantum critical point. At low energies, these adequately describe various Dirac materials as well as their quantum phase transition. In this project, we focus on theories that have a quantum critical point invariant under parity and time-reversal. In this case, the operator product expansion and conformal perturbation theory allow to obtain a general expression for the large frequency expansion of the longitudinal and transverse (Hall) conductivities when the quantum critical point is deformed by a relevant scalar operator. Using these, we are able to deduce exact sum rules for both quantities. As an example, our general results are applied to the Gross-Neveu model, where we obtain the large frequency expansion for both conductivities and the associated sum rules for an arbitrary number of Dirac fermion flavors N. The same expressions are then obtained by an explicit calculation at N = infinity, allowing to compare with our results for any N. Afterwards, analogous general results are obtained for theories where the quantum critical point is deformed by a relevant pseudoscalar. These are finally applied to a theory of massless free Dirac fermions perturbed by a mass term.
259

Electronic and plasmonic properties of real and artificial Dirac materials

Woollacott, Claire January 2015 (has links)
Inspired by graphene, I investigate the properties of several different real and artificial Dirac materials. Firstly, I consider a two-dimensional honeycomb lattice of metallic nanoparticles, each supporting localised surface plasmons, and study the quantum properties of the collective plasmons resulting from the near field dipolar interaction between the nanoparticles. I analytically investigate the dispersion, the effective Hamiltonian and the eigenstates of the collective plasmons for an arbitrary orientation of the individual dipole moments. When the polarisation points close to normal to the plane the spectrum presents Dirac cones, similar to those present in the electronic band structure of graphene. I derive the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent chiral Dirac-like massless bosonic excitations that present similar effects to those of electrons in graphene, such as a non-trivial Berry phase and the absence of backscattering from smooth inhomogeneities. I further discuss how one can manipulate the Dirac points in the Brillouin zone and open a gap in the collective plasmon dispersion by modifying the polarisation of the localized surface plasmons, paving the way for a fully tunable plasmonic analogue of graphene. I present a phase diagram of gapless and gapped phases in the collective plasmon dispersion depending on the dipole orientation. When the inversion symmetry of the honeycomb structure is broken, the collective plasmons become gapped chiral Dirac modes with an energy-dependent Berry phase. I show that this concept can be generalised to describe many real and artificial graphene-like systems, labeling them Dirac materials with a linear gapped spectrum. I also show that biased bilayer graphene is another Dirac material with an energy dependent Berry phase, but with a parabolic gapped spectrum. I analyse the relativistic phenomenon of Klein Tunneling in both types of system. The Klein paradox is one of the most counter-intuitive results from quantum electrodynamics but it has been seen experimentally to occur in both monolayer and bilayer graphene, due to the chiral nature of the Dirac quasiparticles in these materials. The non-trivial Berry phase of pi in monolayer graphene leads to remarkable effects in transmission through potential barriers, whereas there is always zero transmission at normal incidence in unbiased bilayer graphene in the npn regime. These, and many other 2D materials have attracted attention due to their possible usefulness for the next generation of nano-electronic devices, but some of their Klein tunneling results may be a hindrance to this application. I will highlight how breaking the inversion symmetry of the system allows for results that are not possible in these system's inversion symmetrical counterparts.
260

Etude microscopique de systèmes fermioniques finis : corrélations dans les noyaux atomiques et gaz d'électrons confinés par un potentiel harmonique en présence d'un champ magnétique

Naïdja, Houda 09 January 2009 (has links)
Dans le cadre d'une approche Higher Tamm Dancoff Approximation notée HTDA, nous avons étudié les corrélations vibrationnelles de type quadrupole, avec et sans appariement. Le champ moyen a été déterminé dans le cadre d'une approche microscopique utilisant l'interaction effective de Skyrme. Une interaction résiduelle schématique de type delta plus quadrupole-quadrupole, tenant compte en particulier de l'appariement neutron-proton T=0 et T=1 a été utilisé. Les résultats obtenus pour la résonance géante quadrupolaire isoscalaire du noyau Ca40 ont été comparés aux données expérimentales et à d'autres résultats théoriques. Nous avons également étudié un gaz de fermions piégés dans un potentiel d'oscillateur harmonique à 2D, et à température nulle, en présence d'un champ magnétique uniforme. Les expressions exactes des quelques grandeurs thermodynamiques ont été dérivées à partir de la matrice densité de Bloch. / Within the framework of the so-called Higher Tamm Dancoff Approxiamtion (HTDA), we have studied the quadrupole vibrational correlations with and without pairing correlations. The mean field has been determined within a microscopic approach using the Skyrme effective interaction. A schematic residual interaction of the delta plus quadrupole-quadrupole type, allowing in particular neutron-proton T=0 and T=1 pairing, has been used. The results which have been obtained for the isoscalar quadrupole giant resonance of the Ca40 have been compared with the experimental data. A fermion gaz trapped in a 2D harmonic oscillator well at zero temperature and in the presence of a uniform magnetic field has been investigated. Exact expressions of some thermodynamic quantities have been derived from the Bloch density matrix.

Page generated in 0.0822 seconds