• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 6
  • 5
  • Tagged with
  • 40
  • 40
  • 13
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Hyperchanneling of low energy ions on the platinum(111) and gold(110) surfaces and ion scattering spectrometry of ferroelectric lithium tantalate. / Hyperchanneling of low energy ions on the Pt(111) and Au(110) surfaces and ion scattering spectrometry of Ferroelectric LiTaO3 / CUHK electronic theses & dissertations collection

January 2002 (has links)
"May 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
32

Time-of-flight ion scattering and recoiling spectrometry (TOF-SARS) studies of surface charge dynamics of LiTaO3(0001) single crystal. / 利用飛行時間散射反衝符號測量譜儀研究LiTaO3(001)單晶之表面電荷動態特性 / Time-of-flight ion scattering and recoiling spectrometry (TOF-SARS) studies of surface charge dynamics of LiTaO3(0001) single crystal. / Li yong fei xing shi jian san she fan chong fu hao ce liang pu yi yan jiu LiTaO3(001) dan jing zhi biao mian dian he dong tai te xing

January 2003 (has links)
Leang Po Shan = 利用飛行時間散射反衝符號測量譜儀研究LiTaO3(001)單晶之表面電荷動態特性 / 梁寶珊. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 50-51). / Text in English; abstracts in English and Chinese. / Leang Po Shan = Li yong fei xing shi jian san she fan chong fu hao ce liang pu yi yan jiu LiTaO3(001) dan jing zhi biao mian dian he dong tai te xing / Liang Baoshan. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Ferroelectricity and pyroelectricity of LiTαO3 --- p.1 / Chapter 1.2 --- Surface Studies of Ferroelectrics --- p.5 / Chapter 1.2.1 --- Size Effect and Importantce of Surface Properties --- p.5 / Chapter 1.2.2 --- General Difficulties in Surface Studies of Ferroelectrics --- p.5 / Chapter 1.2.3 --- Applicability of TOF-SARS in the Analysis of Ferro- electrics --- p.6 / Chapter 1.3 --- Surface Charge Dynamics on Ferroelectrics --- p.7 / Chapter 1.3.1 --- Surface Charge Screening of Spontaneous Polarization --- p.7 / Chapter 1.3.2 --- Discharge of Excessive Surface Charge --- p.7 / Chapter 1.4 --- Objectives of the Thesis Work: TOF-SARS Study of Surface Charge Dynamics of LiTαO3 --- p.11 / Chapter 2 --- Ion-Surface Interaction --- p.13 / Chapter 3 --- Time-of-Flight (TOF) Ion Scattering and Recoiling Spectrom- eter --- p.17 / Chapter 3.1 --- TOF Ion Scattering and Recoiling Spectrometer --- p.18 / Chapter 3.2 --- Ion Column --- p.19 / Chapter 3.2.1 --- Ion Source --- p.19 / Chapter 3.2.2 --- Pulsing System --- p.19 / Chapter 3.2.3 --- ExB Wien Filter Mass Analyzer --- p.20 / Chapter 3.2.4 --- Einzel Lens --- p.20 / Chapter 3.2.5 --- Neutral Beam Trap --- p.20 / Chapter 3.2.6 --- Vacuum Chamber and Manipulator --- p.20 / Chapter 3.3 --- Variable Angle Detector --- p.23 / Chapter 3.3.1 --- Setup --- p.23 / Chapter 3.3.2 --- Beam Alignment --- p.24 / Chapter 4 --- Results and Analysis --- p.25 / Chapter 5 --- Study of Charge Relaxation Process --- p.35 / Chapter 5.1 --- Derivation of Surface Electric Potential --- p.35 / Chapter 5.2 --- Data Analysis --- p.40 / Chapter 6 --- Conclusion --- p.49 / Bibliography --- p.50
33

Polarization effects on magnetic resonances in ferroelectric potassium tantalate.

January 1964 (has links)
Based on a Ph.D. thesis in the Dept. of Electrical Engineering, 1963. / Bibliography: p. 81-83.
34

Effect of Domain Wall Motion and Phase Transformations on Nonlinear Hysteretic Constitutive Behavior in Ferroelectric Materials

Webber, Kyle Grant 17 March 2008 (has links)
The primary focus of this research is to investigate the non-linear behavior of single crystal and polycrystalline relaxor ferroelectric PMN-xPT and PZN-xPT through experimentation and modeling. Characterization of single crystal and polycrystalline specimens with similar compositions was performed. These data give experimental insight into the differences that may arise in a polycrystal due to local interaction with inhomogeneities. Single crystal specimens were characterized with a novel experimental technique that reduced clamping effects at the boundary and gave repeatable results. The measured experimental data was used in conjunction with electromechanical characterizations of other compositions of single crystal specimens with the same crystallographic orientation to study the compositional effects on material properties and phase transition behavior. Experimental characterization provided the basis for the development of a model of the continuous phase transformation behavior seen in PMN-xPT single crystals. In the modeling it is assumed that a spatial chemical and structural heterogeneity is primarily responsible for the gradual phase transformation behavior observed in relaxor ferroelectric materials. The results are used to simulate the effects of combined electrical and mechanical loading. An improved rate-independent micromechanical constitutive model based on the experimental observations of single crystal and polycrystalline specimens under large field loading is also presented. This model accounts for the non-linear evolution of variant volume fractions. The micromechanical model was calibrated using single crystal data. Simulations of the electromechanical behavior of polycrystalline ferroelectric materials are presented. These results illustrate the effects of non-linear single crystal behavior on the macroscopic constitutive behavior of polycrystals.
35

Semiconducting and dielectric properties of barium titanates, tantalates and niobates with perovskite structure /

Kolodiazhnyi, Taras. Petric, Anthony. January 2002 (has links)
Thesis (Ph.D.) -- McMaster University, 2002. / Adviser: Anthony Petric. Includes bibliographical referernces. Also available via World Wide Web.
36

Semiconducting and dielectric properties of barium titanates, tantalates and niobates with perovskite structure /

Kolodiazhnyi, Taras. Petric, Anthony. January 2002 (has links)
Thesis (Ph.D.) -- McMaster University, 2002. / Adviser: Anthony Petric. Includes bibliographical referernces. Also available via World Wide Web.
37

Ferroelectric liquid crystals for display applications and ultrahard materials via shock compression /

Hale, Michael Andrew, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 258-270). Available also in a digital version from Dissertation Abstracts.
38

Structure and properties of some triangular lattice materials

Downie, Lewis James January 2014 (has links)
This thesis is concerned with the study of two families of materials which contain magnetically frustrated triangular lattices. Each material is concerned with a different use; the first, analogues of YMnO₃, is from a family of materials called multiferroics, the second, A₂MCu₃F₁₂ (where A = Rb¹⁺, Cs¹⁺, M = Zr⁴⁺, Sn⁴⁺, Ti⁴⁺, Hf⁴⁺), are materials which are of interest due to their potentially unusual magnetic properties deriving from a highly frustrated Cu²⁺-based kagome lattice. YFeO₃, YbFeO₃ and InFeO₃ have been synthesised as their hexagonal polymorphs. YFeO₃ and YbFeO₃ have been studied in depth by neutron powder diffraction, A.C. impedance spectroscopy, Mössbauer spectroscopy and magnetometry. It was found that YFeO₃ and YbFeO₃ are structurally similar to hexagonal YMnO₃ but there is evidence for a subtle phase separation in each case. Low temperature magnetic properties are also reported, and subtle correlations between the structural, electrical and magnetic properties of these materials have been found. InFeO₃ was found to adopt a higher symmetry and is structurally similar to the high temperature phase of YMnO₃. TbInO₃ and DyInO₃ have also been synthesised and studied at various temperatures. The phase behaviour of TbInO₃ was analysed in detail using neutron powder diffraction and internal structural changes versus temperature were mapped out – there is also evidence for a subtle isosymmetric phase transition. Neither DyInO₃ nor TbInO₃ show long-range magnetic order between 2 and 300 K, or any signs of ferroelectricity at room temperature. The new compounds Cs₂TiCu₃F₁₂ and Rb₂TiCu₃F₁₂ have both been synthesised and shown to be novel kagome lattice based materials. The former shows a transition from rhombohedral to monoclinic symmetry in the powder form and from rhombohedral to a larger rhombohedral unit cell in the single crystal – a particle size based transition pathway is suggested. For Rb₂TiCu₃F₁₂ a complex triclinic unit cell is found, which distorts with lowering temperature. Both materials show magnetic transitions with lowering temperature. The solid solution Cs₂₋ₓRbₓSnCu₃F₁₂ (x = 0, 0.5, 1.0, 1.5, 2.0) was synthesised and investigated crystallographically, demonstrating a range of behaviours. Rb₂SnCu₃F₁₂ displays a rare re-entrant structural phase transition. In contrast, Cs₀.₅Rb₁.₅SnCu₃F₁₂ shows only the first transition found in the Rb⁺ end member. CsRbSnCu₃F₁₂ adopts a lower symmetry at both room temperature and below. Cs₁.₅Rb₀.₅SnCu₃F₁₂ and Cs₂SnCu₃F₁₂ show a rhombohedral - monoclinic transition, which is similar to that found in Cs₂TiCu₃F₁₂.
39

Materials Chemistry in Search of Energy Materials : Photovoltaics and Photoluminescence

Das, Shyamashis January 2016 (has links) (PDF)
One third of world’s total energy is used in production of electricity and one fifth of the total electricity produced in the world is used in lighting. Hence, the materials that have high potential in the field of photovoltaic’s and photoluminescence have recently drawn special attention to meet the ever increasing energy demands. In this thesis, we have studied a few materials that hold tremendous promises in fabricating photovoltaics and photoluminescent devices. Any ferroelectric material is an efficient solar energy converter as it contains an the intrinsic dipolar field which can effectively separate the photo excited electron and hole. We have developed a few materials which possess inherent polarization efficiently absorb over a wide portion of the solar spectrum and hence can find application in the field of photovoltaics. Secondly, we also dealt with semiconductor nonmaterial’s which are technologically very important owing to their improved photoluminescence properties. We tried to improve their light emitting efficiency by engineering crystal structure in nanometer length scales. The thesis deals with such advanced energy materials and is divided in seven chapters. Chapter 1 provides a brief introduction to the fundamental concepts that are relevant in the subsequent chapters. The chapter is started with a brief scenario of current status of energy production and its usage. Next, we have discussed the prospects of ferroelectric materials in photovoltaic devices. This is followed by a brief background on ferroelectricity and related properties which we have studied subsequently. At the end of this chapter a brief overview of photoluminescence properties in semiconductor nonmaterial’s is presented. In this section we have addressed the particular issues that need to be taken care of in order to improve their light emission properties. Chapter 2 describes different experimental and theoretical methods that have been employed to carry out different studies presented in the thesis. Chapter 3 addresses the possibility of employing BaTiO3 (BTO) based composite perovskite oxides as a potent photovoltaic material. It is known that BTO can produce photocurrent upon excitation with suitable light source. However, inability of BTO to absorb sufficient sunlight owing to its near UV band gap prevents to make use of this material in photovoltaic devices. In order to reduce the band gap we have tried to tune the electronic structure at the band edge by doping non-d0 transition metal ions at Ti site. As it is known in the literature an isovalent substitution of Ti4+ stabilizes non-polar phase of BTO we employed a co-doping strategy to substitute tetravalent Ti with equal percentage of a trivalent and a pentavalent metal ion. Keeping in mind off-centering of Ti4+ is primary reason behind the large ferroelectric polarization of BTO, a judicious choice of co-dopant was necessary to minimize reduction of polarization due to replacement of Ti. We have found at least two pairs of co-dopants, namely Mn3+-Nb5+ and Fe3+-Nb5+ which at low doping concentration ( < 10%) effectively reduces the band gap of BTO without affecting its polarization to a large extent. We systematically increase the doping concentration of both the pair of dopants and found Mn3+-Nb5+ pair is more efficient over Fe3+-Nb5+ both in terms of reducing band gap and retaining the polarization of BTO. We have characterized the ferroelectric nature of all the doped compositions with the help of dielectric, polarization and pyroelectric measurements. We have also performed first principle density functional theory (DFT) calculations for an equivalent doped composition and addressed the nature of modulations of electronic structure at the band edges which is responsible for such large reduction of band gap. Chapter 4 deals with composite perovskite materials which posses large tetragonal distortions with reduced optical band gaps. Here we have exploited Cu-Nb and Cu-Ta pair which upon complete substitution of Ti of BTO leads to composite perovskites with enhanced tetragonal distortion of the perovskite lattice. For two resultant compositions, namely BaCu1/3Nb2/3O3 and BaCu 1/3Ta2/3O3 we have characterized the optical and ferroelectric properties. We found though these material possess small band gap (∼ 2 eV), these are not ferroelectric in nature. Results of second harmonic generation measurements and refinement of powder X-ray diffraction both establish Centro symmetric nature of these materials. We infer from these results that presence of large tetragonal distortion is a result of symmetric Jahn-Teller type distortion of Cu2+ and not due to off-centering of any of the metal ions in their MO6 octahedral geometries. In Chapter 5, we have considered the material SrTiO3 (STO) which is stable in cubic paraelectric phase at room temperature. But at the same time this material is considered as an incipient ferroelectric due to presence of an active polar vibrational mode which does not become completely soft even at temperature close to 0 K. While this polar vibrational mode can easily be frozen by making substitution at Sr site, a similar attempt by making substitution at Ti site failed earlier. Keeping in mind Ti is easier to substitute than Sr we employed same co-doping strategy that we have considered in Chapter 3. We found Mn- Nb and Mn-Ta co-dopants at low doping concentration are extremely useful in transforming incipient ferroelectric STO into a dipolar glass. We have characterized the glassy dipolar property of doped STO with the help of tem-perature dependent dielectric response of these material. At the same time we found these co-doped STO possess enhanced static dielectric constant at room temperature with favourable dielectric loss values in comparison to pure STO. We have also ad-dressed the origin of a glassy dipolar state with the help of DFT calculation performed on equivalent doped composition that we have considered for our experiments. In Chapter 6, we have considered another incipient ferroelectric material TiO2 in rutile phase which also possess polar vibrational mode at temperature close to 0 K. A lattice strain along the polar vibrational mode make symmetric non-polar structure unstable with respect to the distorted polar structure. In this context, we found two particular compositions FeTiTaO6 and CrTiTaO6 that are also stable in rutile phases at room temperature but possess similar strain due to presence of larger Fe or Cr and Ta in rutile lattice. Considering the fact these two composite rutile oxides are relaxer ferroelectric in nature, we critically evaluated the effect of the particular kind of strain that these materials introduce in rutile lattice. We also characterized relaxor ferroelectric property and optical band gap of these materials and commented on the potential of these materials in exploiting them in photovoltaic devices. Chapter 7 presents a unique strategy of making use of crystal defects in improving photoluminescent properties of semiconductor nanocrystals. We have shown defects when introduced in nanocrystals in a controlled protected manner efficiently overcome the problem of self absorption which is known to reduce quantum efficiency of emit-ted light. Controlling synthesis conditions we separately prepared CdS nanocrystals with and without intergrowth defects. We characterized the presence of the intergrowth defect with the help of high resolution transmission electron microscope (HRTEM) image. We have also characterized Stokes’ shifted PL emission and ultrafast charge carrier dynamics of these NCs with intergrowth defects. To support these experimental findings we have computed the electronic structures of model nanoclusters possessing similar intergrowth defects that has been observed in HRTEM images. We find that the presence of defects in a nanocluster particularly affect the position of the band edge. However our joint density of state calculation shows that contribution of these defect states to an absorption spectra is negligible. Thus presence of defect states at band edge ensures a Stokes’ shifted emission without affecting the position of absorption. In a separate section of this chapter we have shown apart from intergrowth defects presence of twin boundary also provide similar mid-gap states that can alter its’ optical proper-ties to large extent. In summary, we have studied a few bulk and nano-materials which can show improved photovoltaic and photoluminescence property. We investigated effect of external dopant ions on a classical ferroelectric material BaTiO3 and two incipient ferroelectric materials SrTiO3 and rutile TiO2. We have also shown that efficient defect engineering could be extremely useful in improving photoluminescent property of CdS nanocrystals which is a prototype of II-VI semiconductor nanomaterials. In a separate Appendix Chapter, we have shown an easy and efficient way to suppress coffee ring effect which takes place universally when a drop of colloidal suspension is dried on a solid substrate. We have shown temporary modification of hydropho-bicity of a glass substrate not only can suppress the coffee ring effect but also leaves the particle in a highly ordered self-assembled phase after completion of drying process
40

Studies On Growth And Physical Properties Of Certain Nonlinear Optical And Ferroelectric Crystals

Vanishri, S 01 1900 (has links)
Nonlinear optics and ferroelectrics have been recognized for several decades as promising fields with important applications in the area of opto-electronics, photonics, memory devices, etc. High performance electro-optical switching elements for telecommunications and optical information processing are based on the material properties. Hence, there is always a continuous search for new and better materials. In this thesis we have investigated the growth and physical properties of four crystals viz. two NLO and two ferroelectric crystals. This thesis consists of eight chapters. The first chapter gives an overview of historical perspectives of nonlinear optical phenomenon, ferroelectricity and materials developed therein. The second chapter gives a brief description of the underlying theories of crystal growth, nonlinear optics and ferroelectricity. A major portion of this chapter consists of gist of the earlier work carried out on compounds of our interest viz. urea L-malic acid, sodium p-nitrophenolate dihydrate, glycine phosphite and lithium niobate. Synthesis, growth, crystal structure details and some physical properties of these materials are briefed. The third chapter describes the experimental techniques needed to grow as well as characterize these crystals. The experiments are performed on single crystals grown in the laboratory using the solution growth setup and Czochralski crystal puller. These growth units are described in detail. Preliminary characterization techniques like powder Xray diffraction, optical transmission, scanning electron microscopy, Vickers and Knoop hardness are described briefly. Various experimental methods viz. dielectric, polarization reversal, photoacoustic spectroscopy and laser induced damage for characterizing the grown crystals are explained. Urea L-malic acid (ULMA) is a new NLO organic material which is reported to exhibit second harmonic efficiency three times that of the widely used inorganic crystal, KDP. Hence, this material is selected for detailed investigation and the results obtained are discussed in chapter 4. This chapter contains details of single crystal growth and characterization of ULMA. The crystals are grown by slow cooling technique. The complete morphology of the crystal is evaluated using optical goniometry. The grown crystals are characterized for their optical and thermal properties. The defect content in the grown crystal is evaluated by chemical etching. As the surface damage of the crystal by high power lasers limits its performance in NLO applications, a detailed laser induced damage studies are performed on ULMA. Both single shot and multiple shot damage threshold values for 1064 nm and 532 nm laser radiation are determined and correlated with the mechanical hardness. In addition, the thermal diffusivity and thermal conductivity of ULMA along various crystallographic orientations are evaluated using laser induced photoacoustic spectroscopy and the results are interpreted in terms of crystal bonding environment. Another NLO crystal taken up for study is sodium p-nitrophenolate dihydrate (NPNa 2H2O), a semiorganic material. This crystal is a very efficient NLO material and has the advantages of both organics and inorganics. Earlier investigations on growth of NPNa.2H2O in various solvents have shown methanol as the most suitable solvent for growth. Growth from aqueous solution was discarded as it did not yield crystals which are stable. In the present investigation, stable, NLO active NPNa.2H2O crystals are obtained using aqueous solution itself by varying the crystallization conditions and exploring the suitable temperature range. The details of growth and characterization form the subject of fifth chapter. The grown crystals are characterized using optical transmission, XRD and thermo gravimetric analysis. Later, laser induced damage threshold is evaluated for both 1064 nm and 532 nm laser radiation and compared wit the methanol grown ones. A possible mechanism of damage is given. The sixth and seventh chapters deal with growth and characterization of ferroelectric materials namely glycine phosphite and lithium niobate respectively. Glycine phosphite is a low temperature ferroelectric crystal which is well studied in terms of its dielectric and ferroelectric properties. But very few radiation damage studies are reported. The effect of ionizing radiation on ferroelectrics is of considerable interest as it significantly modifies the physical properties of these materials. In the present investigation, effects of X-ray irradiation (_ = 1.5418 °A) on the lattice parameters, dielectric constant, loss tangent, polarization switching characteristics and domain dynamics of glycine phosphite are investigated. X-ray irradiation is performed in the non-polar phase of the sample. The effect as a function of duration of exposure is studied. X-ray irradiation in GPI has resulted in drastic reduction in _ values and shift in transition temperature towards lower temperatures. X-ray irradiation on polarization switching properties of the crystal are also investigated. The activation energy and threshold field of switching increase with the irradiation time. The behaviour of domain wall mobility is quite different from that exhibited by other well known ferroelectrics. These results are discussed in chapter 6 and a possible explanation for the unusual behaviour of domain wall mobility is given. The defect generated is identified as PO32− radical by electron paramagnetic measurement. Lithium niobate (LiNbO3) is an extensively studied material in terms of its NLO and ferroelectric properties. This material has high piezoelectric coupling coefficients along certain directions which makes it suitable for wide band surface acoustic wave applications. Hence there is a demand for good quality, single domain YZ-LiNbO3 substrates. Chapter 7 describes the growth of Z-pulled congruent LiNbO3 using Czochralski technique. Large single crystals of diameter 30 mm and length 80 mm are grown from congruent composition employing Czochralski technique. The grown crystals are multidomain and hence electric field poling is performed to get single domain crystals. Their subsequent characterization for SAW devices upto 200 MHz was performed and compared with the imported substrate. The general conclusions are given in chapter 8 along with possible future work that could be performed on these crystals.

Page generated in 0.1055 seconds