• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sinteza nanoprahova i dobijanje kompozitne keramike sa magnetnom i dielektričnom fazom za primenu u mikroelektronici / Synthesis of nanopowders and obtaining of composite ceramics with magnetic and dielectric phase for microelectronic application

Lanté Bojana 14 October 2014 (has links)
<p>U ovom radu sintetisani su kompozitni nanoprahovi i nanoprahovi tipa jezgro&ndash; omotač sa dielektričnom i magnetnom fazom, kao pogodan polazni materijal za procesiranje kompozitne keramike za primenu u mikroelektronici. Osnovni cilj ove doktorske disertacije je bio utvrđivanje veza između uslova sinteze, morfologije čestica, uslova procesiranja i mikrostrukture kompozitne keramike. Nanoprahovi su sintetisani hemijskim metodama sinteze u tečnoj fazi (sol-gel i koprecipitacija) i gasnoj fazi (CVS), pri čemu je vr&scaron;ena optimizacija procesnih uslova u cilju sinteze čestica željene strukture i hemijskog sastava. Istraživanja su vr&scaron;ena na nekoliko modelnih sistema sa feritima kao magnetnom fazom i titanatima ili silikom kao dielektričnom fazom: NiFe2O4SiO2, Fe3O4SiO2, SrTiO3NiFe2O4, BaTiO3NiFe2O4 i BaTiO3Fe3O4. Hemijska sinteza u tečnoj fazi se pokazala pogodnom zato &scaron;to pruža mogućnost kontrolisanja morfologije kompozitnih čestica ne samo pode&scaron;avanjem procesnih parametara sinteze već i funkcionalizacijom faza kojom se uzrokuje njihovo elektrostatičko privlačenje i formiranje strukture jezgro&ndash;omotač. Ipak, zbog velikog stepena aglomeracije prisutnog tokom sinteze u tečnoj fazi, dobijanje omotača uniformne debljine i izbegavanje homogene nukleacije faza se pokazalo te&scaron;ko. Hemijskom sintezom u gasnoj fazi (CVS) je po prvi put sintetisan kompozitni nanoprah na bazi kompleksnih oksida titanata i ferita.<br />Utvrđeno je da i pored velikog potencijala CVS metode u smislu sinteze ultrafinih prahova na bazi titanata i ferita u jednom koraku, ova metoda nudi relativno slabu kontrolu morfologije kompozitnih čestica pri visokim procesnim temperaturama koje su neophodne za kristalizaciju dve faze. Sintetisani nanoprahovi na bazi titanata i ferita (SrTiO3NiFe2O4 i BaTiO3NiFe2O4) procesirani su u gustu kompozitnu keramiku visokotemperaturnim sinterovanjem, u cilju ispitivanja veze morfologije čestica i mikrostrukture kompozita, optimizacije režima sinterovanja i funkcionalne karakterizacije dobijene keramike sa različitim masenim odnosom faza. Prahovi su sinterovani putem konvencionalnog sinterovanja u atmosferi vazduha, spark plazma sinterovanja (SPS) ili kombinacijom ove dve metode. Utvrđeno je da prahovi strukture jezgro&ndash;omotač densifikuju u značajno gu&scaron;ću i homogeniju keramiku u odnosu na kompozitne prahove istog sastava na istim procesnim temperaturama. Pored toga, pH vrednost sinteze čestica i atmosfera visokotemperaturnog sinterovanja su se pokazali veoma značajnim u smislu održavanja željenog faznog sastava dobijenih kompozita. U pogledu režima sinterovanja dobijenih prahova, kombinacija niskotemperaturnog konvencionalnog i SPS sinterovanja (1000 &deg;C) je dala najbolje rezultate u smislu postizanja zadovoljavajuće gustine kompozita (&gt;95% teorijske gustine), održavanja željenog faznog sastava i homogene distribucije faza. Funkcionalna karakterizacija sinterovane keramike sa različitim masenim odnosom faza (BaTiO3 : NiFe2O4 = 1,2,8) potvrdila je očekivano dielektrično, feroelektrično i ferimagnetno pona&scaron;anje dobijenih kompozita.</p> / <p>Composite and core&ndash;shell nanopowders with dielectric and magnetic phase have been synthesized in this work, as a suitable starting material for processing of composite ceramics for microelectronic application. The main goal of this doctoral dissertation was the determination of the link between synthesis conditions, particle morphology, processing conditions and microstructure of composite ceramics. Nanopowders have been synthesized by chemical synthesis methods in wet phase (sol&ndash;gel and coprecipitation) and gas phase (CVS), whereas the optimization of processing parameters was conducted with the goal to synthesize particles of desired structure and chemical composition. Studies were conducted on the few model systems with ferrites as a magnetic and titanates as a dielectric phase: NiFe2O4SiO2, Fe3O4SiO2, SrTiO3NiFe2O4, BaTiO3NiFe2O4 and BaTiO3Fe3O4. Chemical wet synthesis has proven suitable because it offers composite particle morphology control not only by adjustment of synthesis parameters but also by phase functionalization causing their mutual electrostatic attraction and thus core&ndash;shell structure formation. However, due to the high degree of agglomeration present during the wet phase synthesis, formation of the shell with uniform thickness and avoidance of homogeneous nucleation has proven difficult. For the first time, composite ferrite and titanate-based nanopowder has been synthesized by means of Chemical Vapor Synthesis (CVS). It has been found that beside high potential of CVS method for one-step synthesis of ultrafine titanate and ferrite-based nanopowders, this method offers relatively low control of composite particle morphology at high processing temperatures which are necessary for crystallization of both phases. Synthesized titanate and ferrite-based nanopowders (SrTiO3NiFe2O4 and BaTiO3NiFe2O4) were processed into dense ceramics by high-temperature sintering, in order to find the link between particle morphology and composite microstructure, optimize the sintering regime and conduct the functional characterization of obtained ceramics with different phase mass ratio.<br />The powders were sintered by conventional sintering in air, spark plasma sintering<br />(SPS) or combination of these two methods. It was found that core&ndash;shell powders densify in ceramics with considerably higher density and homogeneity at the same processing temperature, than the composite powders with the same composition. Moreover, synthesis pH value and sintering temperature was found to be very important in terms of phase composition preservation of obtained composites. Regarding the sintering regime of obtained powders, combination of low-temperature conventional and SPS sintering (1000 &deg;C) has given the best results in terms of achieving adequate composite density (&gt;95% theoretical density), phase preservation and homogeneous phase distribution. Functional characterization of sintered ceramics with different phase mass ratio (BaTiO3 : NiFe2O4 = 1,2,8) confirmed the expected dielectric, ferroelectric and ferromagnetic behaviour of obtained composites.</p>
2

MORPHOLOGY TUNING OF OXIDE-METAL VERTICALLY ALIGNED NANOCOMPOSITES FOR HYBRID METAMATERIALS

Juanjuan Lu (17658789) 19 December 2023 (has links)
<p dir="ltr">Metamaterials are artificially engineered nanoscale systems with a three-dimensional repetitive arrangement of certain components, and present exceptional optical properties for applications in nanophotonics, solar cells, plasmonic devices, and more. Self-assembled oxide-metal vertically aligned nanocomposites (VANs), with metallic phase as nanopillars embedded in the matrix oxide, have been recently proposed as a promising candidate for metamaterial applications. However, precise microstructural control and the structure-property relationships in VANs are still in high demand. Thus, by employing multiple approaches for structural design, this dissertation attempts to investigate the mechanisms of nanostructure evolutions and the corresponding optical responses.</p><p dir="ltr">In this dissertation, the precise control over the nanostructures has been demonstrated through morphology tuning, nanopillar orderings, and strain engineering. Firstly, Au, a well-known plasmonic mediator, has been selected as the metallic phase that forms nanopillars. Based on the previously proposed strain compensation model which describes the basic formation mechanism of VAN morphology, two oxides were then considered: La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3 </sub>(LSMO) and CeO<sub>2</sub>. In the first two chapters of this dissertation, LSMO was considered due to its similar lattice (a<sub>LSMO </sub>= 3.87 Å, a<sub>Au </sub>= 4.08 Å) and its enormous potential in nanoelectronics and spintronics. Deposited on SrTiO<sub>3</sub> (001) substrate through pulsed laser deposition (PLD), LSMO-Au nanocomposites exhibit ideal VAN morphology as well as promising hyperbolic dispersions in response to the incident illuminations. By substrate surface treatment of annealing at 1000°C, and variation of STO substate orientations from (001), to (111) and (110), the improved and tunable in-plan orderings of Au nanopillars have been successfully achieved. In the third chapter, a new oxide-metal VAN system of <a href="" target="_blank">CeO<sub>2</sub></a>-Au (a<sub>CeO2 </sub>= 5.411 Å, and a<sub> CeO2</sub>/= 3.83 Å) has been deposited. The intriguing 45° rotated in-plan epitaxy presents an unexpected update to the strain compensation model, and tuning of Au morphology from nanopillars, nanoantennas, to nanoparticles also shows an effective modulation of the LSPR responses. COMSOL simulations have been exploited to reveal the relationships between Au morphologies and optical responses. In the last chapter, the two VAN systems of LSMO-Au and CeO<sub>2</sub>-Au have been combined to form a complex layered VAN thin film. Investigations into the strain states, the nature of complex interfaces, and the according hybrid properties, show dramatic possibilities for further strain engineering. In summary, this dissertation has provided multiple routes for highly tailorable oxide-metal nanocomposite designs. And the two proposed material systems present great potential in optical metamaterial applications including biosensors, photovoltaics, super lenses, and more.</p>
3

Short range ordering and microstructure property relationship in amorphous alloys / Nahordnung und Mikrostruktur-Eigenschaftsbeziehungen in amorphen Legierungen

Shariq, Ahmed 09 January 2007 (has links)
No description available.

Page generated in 0.0944 seconds