• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reactions of lipid and lipid hydroperoxides with myoglobin and lipoxygenase

Reeder, Brandon Jon January 1998 (has links)
No description available.
2

Estudos cinéticos da catálise da reação de fenton por 3,5-di-terc-butil-catecol / Kinetic studies of the catalysis of the fenton reaction by 3,5-di-tert- butyl-catechol

Silva, Volnir de Oliveira 14 May 2010 (has links)
A reação de Fenton é o nome dado à oxidação de ferro(II) a ferro(III) pela água oxigenada, uma reação que produz espécies com alto poder oxidante como o radical hidroxila. Neste trabalho, foi desenvolvida uma metodologia espectrofotométrica para o acompanhamento da formação de ferro(III) nos momentos iniciais da reação de Fenton. Esta metodologia foi aplicada a quatro conjuntos de reações: (A) o sistema Fenton simples, contendo apenas ferro(II) e H2O2; (B) o sistema A contendo isopropanol, um substrato orgânico simples que sofre principalmente oxidação a acetona; (C) o sistema A contendo o catalisador 3,5-di-terc-butil-catecol (H2DTBCat); (D) o sistema C mais isopropanol, que corresponde ao sistema catalítico completo. Em cada conjunto, variou-se as concentrações de ferro(II) e H2O2. Um modelo cinético, baseado num conjunto de reações explícitas e as respectivas constantes de velocidade, foi desenvolvido para simular a velocidade de formação de ferro(III) para estes quatro conjuntos de reações. Utilizando reações relatadas na literatura, o modelo forneceu simulações que reproduziram satisfatoriamente os dados experimentais dos conjuntos A e B. No caso dos conjuntos C e D, porém, foi necessário propor uma etapa envolvendo a formação de ferro(IV) ou ferril, estabilizado por complexação com o H2DTBCat. Entretanto, mesmo com a inclusão desta espécie, o modelo não captou a complexidade do sistema em altas concentrações de peróxido e ferro. Esta falha foi atribuída à rápida degradação competitiva do H2DTBCat nestas condições, com a subseqüente participação destes produtos de degradação na reação ou como co-catalisadores ou como inibidores. / The Fenton reaction is the name given to the oxidation of iron(II) to iron(III) by hydrogen peroxide, a reaction that produces highly oxidizing species like the hydroxyl radical. In this work, a spectrophotometric methodology is developed to accompany the formation of iron(III) during the initial moments of the Fenton reaction. This methodology was applied to four sets of reactions: (A) the simple Fenton system, containing only iron(II) and H2O2; (B) system A containing isopropanol, a simple substrate that undergoes principally oxidation to acetone; (C) system A containing the catalyst 3,5-di-tert-butyl-catechol (H2DTBCat); (D) system C plus isopropanol, corresponding to the complete catalytic system. For each set of reactions, the concentrations of iron(II) and H2O2 were varied. A kinetic model, based on explicit chemical reactions and their respective rate constants, was developed to simulate the the rate of formation of iron(III) for these four sets of reactions above. Using reactions described in the literature, the model produced simulations that satisfactorily reproduced the experimental data of sets A and B. In the case of sets C and D, however, it was necessary to propose an additional step involving the formation of iron(IV) or ferril, stabilized by complexation with H2DTBCat. Nonetheless, even with the inclusion of this species, the model failed to capture the complexity of the system at high concentrations of peroxide and iron. This failure was attributed to the rapid competitive degradation of H2DTBCat under these conditions, with the subsequent participation of the degradation products in the reaction as either co-catalysts or inhibitors.
3

Estudos cinéticos da catálise da reação de fenton por 3,5-di-terc-butil-catecol / Kinetic studies of the catalysis of the fenton reaction by 3,5-di-tert- butyl-catechol

Volnir de Oliveira Silva 14 May 2010 (has links)
A reação de Fenton é o nome dado à oxidação de ferro(II) a ferro(III) pela água oxigenada, uma reação que produz espécies com alto poder oxidante como o radical hidroxila. Neste trabalho, foi desenvolvida uma metodologia espectrofotométrica para o acompanhamento da formação de ferro(III) nos momentos iniciais da reação de Fenton. Esta metodologia foi aplicada a quatro conjuntos de reações: (A) o sistema Fenton simples, contendo apenas ferro(II) e H2O2; (B) o sistema A contendo isopropanol, um substrato orgânico simples que sofre principalmente oxidação a acetona; (C) o sistema A contendo o catalisador 3,5-di-terc-butil-catecol (H2DTBCat); (D) o sistema C mais isopropanol, que corresponde ao sistema catalítico completo. Em cada conjunto, variou-se as concentrações de ferro(II) e H2O2. Um modelo cinético, baseado num conjunto de reações explícitas e as respectivas constantes de velocidade, foi desenvolvido para simular a velocidade de formação de ferro(III) para estes quatro conjuntos de reações. Utilizando reações relatadas na literatura, o modelo forneceu simulações que reproduziram satisfatoriamente os dados experimentais dos conjuntos A e B. No caso dos conjuntos C e D, porém, foi necessário propor uma etapa envolvendo a formação de ferro(IV) ou ferril, estabilizado por complexação com o H2DTBCat. Entretanto, mesmo com a inclusão desta espécie, o modelo não captou a complexidade do sistema em altas concentrações de peróxido e ferro. Esta falha foi atribuída à rápida degradação competitiva do H2DTBCat nestas condições, com a subseqüente participação destes produtos de degradação na reação ou como co-catalisadores ou como inibidores. / The Fenton reaction is the name given to the oxidation of iron(II) to iron(III) by hydrogen peroxide, a reaction that produces highly oxidizing species like the hydroxyl radical. In this work, a spectrophotometric methodology is developed to accompany the formation of iron(III) during the initial moments of the Fenton reaction. This methodology was applied to four sets of reactions: (A) the simple Fenton system, containing only iron(II) and H2O2; (B) system A containing isopropanol, a simple substrate that undergoes principally oxidation to acetone; (C) system A containing the catalyst 3,5-di-tert-butyl-catechol (H2DTBCat); (D) system C plus isopropanol, corresponding to the complete catalytic system. For each set of reactions, the concentrations of iron(II) and H2O2 were varied. A kinetic model, based on explicit chemical reactions and their respective rate constants, was developed to simulate the the rate of formation of iron(III) for these four sets of reactions above. Using reactions described in the literature, the model produced simulations that satisfactorily reproduced the experimental data of sets A and B. In the case of sets C and D, however, it was necessary to propose an additional step involving the formation of iron(IV) or ferril, stabilized by complexation with H2DTBCat. Nonetheless, even with the inclusion of this species, the model failed to capture the complexity of the system at high concentrations of peroxide and iron. This failure was attributed to the rapid competitive degradation of H2DTBCat under these conditions, with the subsequent participation of the degradation products in the reaction as either co-catalysts or inhibitors.
4

Biochemical and Spectroscopic Characterization of Tryptophan Oxygenation: Tryptophan 2, 3-Dioxygenase and Maug

Fu, Rong 10 June 2009 (has links)
TDO utilizes b-type heme as a cofactor to activate dioxygen and insert two oxygen atoms into free L-tryptophan. We revealed two unidentified enzymatic activities of ferric TDO from Ralstonia metallidurans, which are peroxide driven oxygenation and catalase-like activity. The stoichiometric titration suggests that two moles of H2O2 were required for the production of one mole of N-formylkynurenine. We have also observed monooxygenated-L-tryptophan. Three enzyme-based intermediates were sequentially detected in the peroxide oxidation of ferric TDO in the absence of L-Trp including compound I-type and compound ES-type Fe-oxo species. The Fe(IV) intermediates had an unusually large quadrupole splitting parameter of 1.76(2) mm/s at pH 7.4. Density functional theory calculations suggest that it results from the hydrogen bonding to the oxo group. We have also demonstrated that the oxidized TDO was activated via a homolytic cleavage of the O-O bond of ferric hydroperoxide intermediate via a substrate dependent process to generate a ferrous TDO. We proposed a peroxide activation mechanism of the oxidized TDO. The TDO has a relatively high redox potential, the protonated state of the proximal histidine upon substrate binding as well as a common feature of the formation of ferric hydroxide species upon substrate or substrate analogues binding. Putting these together, we have proposed a substrate-based activation mechanism of the oxidized TDO. Our work also probed the role of histidine 72 as an acid-base catalyst in the active site. In H72S and H72N mutants, one water molecule plays a similar role as that of His72 in wild type TDO. MauG is a c-type di-heme enzyme which catalyze the biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. Its natural substrate is a monohydroxylated tryptophan residue present in a 119-kDa precursor protein of methylamine dehydrogenase (MADH). We have trapped a novel bis-Fe(IV) intermediate from MauG, which is remarkably stable. A tryptophanyl radical intermediate of MADH has been trapped after the reaction of the substrate with the bis-Fe(IV) intermediate. Analysis by high-resolution size-exclusion chromatography shows that MauG can tightly bind to the biosynthetic precursor and form a stable complex, but the mature protein substrate does not.
5

Spectroscopic and Kinetic Investigation of the Catalytic Mechanism of Tyrosine Hydroxylase

Eser, Bekir Engin 2009 December 1900 (has links)
Tyrosine Hydroxylase (TyrH) is a pterin-dependent mononuclear non-heme iron oxygenase. TyrH catalyzes the hydroxylation reaction of tyrosine to dihydroxyphenylalanine (DOPA). This reaction is the first and the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. The active site iron in TyrH is coordinated by the common facial triad motif, 2-His-1-Glu. A combination of kinetic and spectroscopic techniques was applied in order to obtain insight into the catalytic mechanism of this physiologically important enzyme. Analysis of the TyrH reaction by rapid freeze-quench Mossbauer spectroscopy allowed the first direct characterization of an Fe(IV) intermediate in a mononuclear nonheme enzyme catalyzing aromatic hydroxylation. Further rapid kinetic studies established the kinetic competency of this intermediate to be the long-postulated hydroxylating species, Fe(IV)O. Spectroscopic investigations of wild-type (WT) and mutant TyrH complexes using magnetic circular dichroism (MCD) and X-ray absorption spectroscopy (XAS) showed that the active site iron is 6-coordinate in the resting form of the enzyme and that binding of either tyrosine or 6MPH4 alone does not change the coordination. However, when both tyrosine and 6MPH4 are bound, the active site becomes 5-coordinate, creating an open site for reaction with O2. Investigation of the kinetics of oxygen reactivity of TyrH complexes in the absence and presence of tyrosine and/or 6MPH4 indicated that there is a significant enhancement in reactivity in the 5-coordinate complex in comparison to the 6-coordinate form. Similar investigations with E332A TyrH showed that Glu332 residue plays a role in directing the protonation of the bridged complex that forms prior to the formation of Fe(IV)O. Rapid chemical quench analyses of DOPA formation showed a burst of product formation, suggesting a slow product release step. Steady-state viscosity experiments established a diffusional step as being significantly rate-limiting. Further studies with stopped-flow spectroscopy indicated that the rate of TyrH reaction is determined by a combination of a number of physical and chemical steps. Investigation of the NO complexes of TyrH by means of optical absorption, electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) techniques revealed the relative positions of the substrate and cofactor with respect to NO, an O2 mimic, and provided further insight into how the active site is tuned for catalytic reactivity upon substrate and cofactor binding.

Page generated in 0.0296 seconds