• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 50
  • 22
  • 14
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 440
  • 440
  • 172
  • 67
  • 47
  • 43
  • 42
  • 40
  • 37
  • 37
  • 33
  • 31
  • 31
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

A fiber optic polarimeter for use in chemical analysis

Hamner, Vincent N. 08 June 2009 (has links)
Polarimetry, as applied to chemical analysis, deals with the determination of the extent and direction that an optically active chemical species will rotate incident linearly polarized light. Although well developed for physical sensing, the technique of fiber optic polarimetry for chemical sensing remains in its infancy. This thesis is concerned with the design and development of an optical fiber polarimeter which measures the optical rotation of linearly polarized light that occurs in a sensing region between two multi-mode optical fibers. Over short distances, the polarization preserving capabilities of large-core multi-mode optical fibers were investigated. Polarimetric analyses were performed using sucrose and quinine hydrochloride. The instrument has a resolution of 0.08·, and is an excellent platform for an LC or FIA detector. Its more intriguing future lies in evanescent field sensor applications and studies of chiroptical surface interactions. / Master of Science
392

Adaptive Control of Waveguide Modes in Two-Mode Fibers

Lu, Peng 04 April 2016 (has links)
Few mode fibers and multimode fibers (MMFs) are traditionally regarded as unsuitable for important applications such as communications and sensing. A major challenge in using MMFs for aforementioned applications is how to precisely control the waveguide modes propagating within MMFs. In this thesis, we experimentally demonstrate a generic method for controlling the linearly polarized (LP) modes within a two-mode fiber (TMF). Our method is based on adaptive optics (AO), where one utilizes proper feedback signals to shape the wavefront of the input beam in order to achieve the desired LP mode composition. In the first part of this thesis, we demonstrate the feasibility of AO-based mode control by using the correlation between the experimentally measured field distribution and the desired mode profiles as feedback for wavefront optimization. Selectively excitation of pure LP modes or their combinations at the distal end of a TMF are shown. Furthermore, we demonstrate that selective mode excitation in the TMF can be achieved by using only 5×5 independent phase blocks. Afterwards, we extend our AO-based mode control method to more practical scenarios, where feedback signals are provided by all-fiber devices such as a directional fiber coupler or fiber Bragg gratings (FBGs). Using the coupling ratio of a directional coupler as feedback, we demonstrate adaptive control of LP modes at the two output ports of the directional coupler. With feedback determined by the relative magnitude of optical power reflected by a FBG and the transmitted power, selective excitations of the LP01 and the LP11 modes are experimentally shown. As the final component of this thesis, we experimentally combine the AO-based mode control with time-division-multiplexing. By choosing reflected pulses with appropriate arrival time for mode control, we can selectively excite the LP11 mode at different FBG locations within the TMF, based on the ratio of optical signals reflected by FBGs in the TMF and the transmitted signal. Using two lasers set at the two FBG peak reflection wavelengths associated with the LP01 and the LP11 modes, we can accomplish AO-based mode control within a TMF by using only the reflection signals from the FBG. By using the ratio of the reflected signals of two lasers as feedback, we demonstrate selective excitation of almost pure LP01 or LP11 mode at the FBG location within the TMF. The method developed in this thesis is generic and can be extended to many other applications using appropriately chosen feedback signals. It is possible to generalize the AO-based mode control method to MMF as well. This method may find important applications in MMF-based communication, sensing and imaging et. al. in the future. / Ph. D.
393

Hawking radiation in dispersive media

Robertson, Scott James January 2011 (has links)
Hawking radiation, despite its presence in theoretical physics for over thirty years, remains elusive and undetected. It also suffers, in its original context of gravitational black holes, from conceptual difficulties. Of particular note is the trans-Planckian problem, which is concerned with the apparent origin of the radiation in absurdly high frequencies. In order to gain better theoretical understanding and, it is hoped, experimental verification of Hawking radiation, much study is being devoted to systems which model the spacetime geometry of black holes, and which, by analogy, are also thought to emit Hawking radiation. These analogue systems typically exhibit dispersion, which regularizes the wave behaviour at the horizon but does not lend itself well to analytic treatment, thus rendering Hawking’s prediction less secure. A general analytic method for dealing with Hawking radiation in dispersive systems has proved difficult to find. This thesis presents new numerical and analytic results for Hawking emission spectra in dispersive systems. It examines two black-hole analogue systems: it begins by introducing the well-known acoustic model, presenting some original results in that context; then, through analogy with the acoustic model, goes on to develop the lesser-known fibre-optical model. The following original results are presented in the context of both of these models: • an analytic expression for the low-frequency temperature is found for a hyperbolic tangent background profile, valid in the entire parameter space; it is well-known that the spectrum is approximately thermal at low frequencies, but a universally valid expression for the corresponding temperature is an original development; • an analytic expression for the spectrum, valid over almost the entire frequency range, when the velocity profile parameters lie in the regime where the low-frequency temperature is given by the Hawking prediction; previous work has focused on the low-frequency thermal spectrum and the characterization of the deviations from thermality, rather than a single analytic expression; and • a new unexplored regime where no group-velocity horizon exists is examined; the Hawking spectra are found to be non-zero here, but also highly non-thermal, and are found, in the limit of small deviations, to vary with the square of the maximum deviation; the analytic expression for the case with a horizon is found to carry over to this new regime, with appropriate modifications. Furthermore, the thesis examines the results of a classical frequency-shifting experiment in the context of fibre-optical horizons. The theory of this process is presented for both a constant-velocity and a constantly-decelerating pulse, the latter case taking account of the Raman effect. The resulting spectra are at least qualititively explained, but there is a discrepancy between theory and experiment that has not yet been accounted for.
394

Time-frequency localisation of distributed Brillouin Optical Time Domain Reflectometry

Luo, Linqing January 2018 (has links)
Distributed fibre optic sensing (DFOS) is essential for structural health monitoring (SHM) of strain changes induced during the lifetime of a structure. Among different DFOS systems, the Brillouin Optical Time Domain Reflectometry (BOTDR) takes the advantages of obtaining full frequency spectrum to provide strain and temperature information along the optic fibre. The key parameters of distributed fibre optic sensors, spatial and frequency resolution, are strongly linked with the time-frequency (T-F) localisation in the system in three parts: pulse, hardware design and optical fibre. T-F localization is fundamentally important for the communication system, whereas in this study the importance of the T-F localisation to the spatial and frequency resolution, repeatability and the measurement speed are introduced in BOTDR. In this dissertation, the development of DFOS is first introduced, including both traditional methods and new developed designs. The literature review shows the signal to noise ratio (SNR) of BOTDR can be improved by investigating its T-F localisation. In the hardware design, in order to improve the T-F localisation in hardware architecture, a Short-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR), which implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fibre, is applied so that the conventional frequency sweeping method can be replaced for high resolution and fast speed measurement, providing new research advances in dynamic distributed sensing. The STFT based BOTDR has better T-F localisation, which in turn provides an opportunity for off-line post signal processing that is more adaptable for fast speed measurements. The spatial and frequency resolution of dynamic BOTDR sensing is limited by the Signal to Noise Ratio (SNR) and the T-F localization of the input pulse shape. The T-F localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. In this study, simulation and experiments of T-F localized different pulses shapes are conducted to examine the limitation of the system resolution. The result indicates that a rectangular pulse should be selected to optimize the spatial resolution and a Lorentzian pulse could be chosen to optimize the frequency resolution, while a Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile, T-F localization is used for pulse T-F localisation optimisation. A set of Kaiser-Bessel functions is used to simulate different pulse shapes and to compare their parameters in terms of T-F localisation and their Brillouin scattering spectrum. A method using an iterative filtering algorithm to achieve the optimised pulse in terms of T-F localisation is introduced to converge the Effective-pulse Width (TEW) in the time-domain and Effective-pulse Linewidth (FEL) in the frequency domain to identify the fundamental limitations. The optimised pulse can be fitted with a 7th order Gaussian (super-Gaussian) shape and it offers the best experimental performance compared to a Rectangular pulse. The sensitivity of a sensor to strain or temperature variations due to distributed Brillouin scattering is closely related to the power distribution on the Brillouin scattering spectrum which is related to the property of the optic fibre. The performance of a highly nonlinear fibre that can generate a higher Brillouin scattering signal is compared to that of a standard single mode fibre. The results show that much higher SNR of the Brillouin scattering spectrum and smaller frequency uncertainties in the sensing measurement can be achieved by using a highly nonlinear fibre for comparable launched powers. With a measurement speed of 4 Hz, the frequency uncertainty can be 0.43 MHz, corresponding to 10 με in strain or 0.43°C in temperature uncertainty for the tested highly nonlinear fibre. In contrast, for a standard single mode fibre, the value would increase to about 1.02 MHz (25 με or 1.02°C), demonstrating the advantage of the tested highly nonlinear fibre for distributed strain/temperature sensing. Results show that, by using a small effective area highly nonlinear fibre, the strain or temperature resolution can be improved because it generates stronger Brillouin scattering signal with high SNR and high Q factor spectrum, both of which determine the optimal averaging time in a single measurement. In general, the STFT-BOTDR can achieve 1 m spatial resolution, 10 με frequency resolution on a 10 km fibre with measurement speed at about 2.5 kHz.
395

Mode-division-multiplexing as a possibility to cope with the increasing capacity demand in optical transmission systems / Le multiplexage en mode comme possibilité de gérer la demande de capacité croissante dans les systèmes de transmission optiques

Koebele, Clemens 28 June 2012 (has links)
Les systèmes de transmission optiques (STOs) déployés actuellement utilisent la détection cohérente pour les débits de 40 Gb/s et 100 Gb/s. Une modulation QPSK ( « Quadrature Phase Shift Keying »), c’est à dire avec 4 niveaux de phase, associée à un multiplexage de polarisation (« PDM » pour « Polarization Division Multiplexing ») permet de transporter 4 bits par symbole. L’utilisation des formats de modulation plus complexes, tels que le 16QAM (pour « Quadrature Amplitude Modulation »), avec 16 états possibles, permet d’augmenter le débit transmis. Cependant, cette méthode réduit fortement la portée de transmission. Par exemple, si on passe de 100 Gb/s PDM-QPSK à 200 Gb/s PDM-16QAM, la portée est réduite par un facteur cinq. Une approche nouvelle et en rupture afin d’augmenter la capacité est le multiplexage en mode (MDM, pour « Mode Division Multiplexing »). Cette approche est investiguée dans le cadre de ma thèse. Je commence ma thèse avec des généralités sur les STOs, suivi d’une présentation de leur évolution historique dans le contexte de la demande de capacité croissante dans les réseaux de télécommunications. Ensuite je montre plusieurs options pour continuer la croissance de capacité dans les STOs avant de me focaliser sur le MDM. Je décris tous les nouveaux éléments clés d’un système MDM typique, notamment la fibre et l’amplificateur légèrement multimodaux, le multiplexeur / démultiplexeur de modes et le nouveau système de réception, en me fondant sur des résultats théoriques, numériques et expérimentaux. Je termine avec une présentation des expériences de transmission MDM, où nous étions parmi les premières équipes mondiales à réaliser une telle démonstration / Currently deployed optical transmission systems use coherent detection for data rates of 40 Gb/s and 100 Gb/s. Quadrature phase shift keying (QPSK) modulation using four phase levels in combination with polarization division multiplexing (PDM) allows transmitting four bits per symbol. The use of more complex modulation formats, such as 16 level quadrature amplitude modulation (16QAM) allows increasing the data rate. However, this method reduces dramatically the transmission reach. For example, when passing from 100 Gb/s PDM-QPSK to 200 Gb/s PDM-16QAM, the reach is reduced by a factor of five. A new and disruptive approach in order to increase the capacity is mode division multiplexing (MDM), and this approach is investigated in the frame of my thesis. I start my thesis with some generalities on optical transmission systems followed by a presentation of their historical evolution against the background of the increasing capacity demand in the worldwide telecommunication networks. Afterwards I show some ways to continue the capacity growth in optical transmission systems before focusing on MDM. I describe the new key elements, notably the few-mode fiber and the few-mode amplifier, the mode-multiplexer / -demultiplexer and the new receiver system. I finish with a presentation of some experiments using entire MDM systems, which allowed us to be among the first research teams worldwide to realize a successful MDM transmission
396

Multiplexed optical fibre sensors for civil engineering applications

Childs, Paul, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2007 (has links)
Fibre-optic sensors have been the focus of a lot of research, but their associated high cost has stifled their transferral from the laboratory to real world applications. This thesis addresses the issue of multiplexing, a technology that would lower the cost per unit sensor of a sensor system dramatically. An overview of the current state of research of, and the principles behind, multiplexed sensor networks is given. A new scheme of multiplexing, designated W*DM, is developed and implemented for a fibre Bragg grating (FBG) optical fibre sensor network. Using harmonic analysis, multiplexing is performed in the domain dual to that of the wavelength domain of a sensor. This scheme for multiplexing is compatible with the most commonly used existing schemes of WDM and TDM and thus offers an expansion over, and a resultant cost decrease from, the sensor systems currently in use. This research covered a theoretical development of the scheme, a proof of principle, simulated and experimental analysis of the performance of the multiplexed system, investigation into sensor design requirements and related issues, fabrication of the sensors according to the requirements of the scheme and the successful multiplexing of eight devices (thus offering an eightfold increase over current network capacities) using this scheme. Extensions of this scheme to other fibre sensors such as Long Period Gratings (LPGs) and blazed gratings were also investigated. Two LPGs having a moir?? structure were successfully multiplexed and it was shown that a blazed Fabry Perot grating could be used as a tuneable dual strain/refractive index sensor. In performing these tests, it was discovered that moir?? LPGs exhibited a unique thermal switching behaviour, hereto unseen. Finally the application of fibre sensors to the civil engineering field was investigated. The skill of embedding optical fibre in concrete was painstakingly developed and the thermal properties of concrete were investigated using these sensors. Field tests for the structural health monitoring of a road bridge made from a novel concrete material were performed. The phenomenon of shrinkage, creep and cracking in concrete was investigated showing the potential for optical fibre sensors to be used as a viable research tool for the civil engineer.
397

Multi-Gbit/s CMOS Transimpedance Amplifier with Integrated Photodetector for Optical Interconnects

Song, Indal 24 November 2004 (has links)
Trends toward increased integration and miniaturization of optical system components have created pressure to consolidate widely disparate analog and digital functions onto fewer and fewer chips with a goal of eventually built into a single mixed-signal chip. Yet, because of those performance requirements, the frontend circuit has traditionally used III-V compound semiconductor technologies, but the low-level of integration with other digital ICs limits the sustainability of such end products for short-distance applications. On the other hand, their CMOS counter parts, despite having such advantages as low power consumption, high yield that lowers the cost of fabrication, and a higher degree of integration, have not performed well enough to survive in such a noisy environment without sacrificing other important attributes. In this research, a high-speed CMOS preamplifier was designed and fabricated through TSMC 0.18/spl mu/m mixed-signal non-epi CMOS technology, and a 20/spl mu/m diameter InGaAs thin-film Inverted-MSM photodetector with a responsivity of 0.15A/W at a wavelength of 1550/spl mu/m was post-integrated onto the circuit. The circuit has a overall transimpedance gain of 60dB/spl Omega/, and bit-error-rate data and eye-diagram measurement results taken as high as 10Gbit/s are reported in this dissertation.
398

Simulation und experimentelle Untersuchung von optischen und elektronischen Entzerrern in hochbitratigen optischen Übertragungssystemen

Fritzsche, Daniel 28 September 2010 (has links) (PDF)
In dieser Arbeit werden verschiedene Methoden zur Erhöhung der Systemtoleranz optischer Übertragungssysteme theoretisch analysiert, durch numerische Simulationen untersucht und in Experimenten und Feldversuchen praktisch überprüft. Der Schwerpunkt lag dabei auf empfängerseitigen elektronischen sowie optischen Entzerrern. Diese Entzerrer verbessern die Signalübertragung, in dem sie die Augenöffnung des Signals am Empfänger vergrößern oder in dem sie durch digitale Logikschaltungen das gesendete Signal aus einem gestörten Signal rekonstruieren. Der Schwerpunkt dieser Arbeit liegt jedoch auf der Untersuchung der Entzerrer auf Systemebene, d.h. es wird das Verhalten in einem kompletten optischen Übertragungssystem bestehend aus Sender, Glasfaserstrecke und Empfänger bewertet. Zur Untersuchung wurde eine Simulationsumgebung in der Programmiersprache FORTRAN erstellt, in der die unterschiedlichen Entzerrer in verschiedenen Netz-Szenarien untersucht wurden. Zur praktischen Untersuchung wurde außerdem eine Testumgebung im verlegten Glasfasernetz aufgebaut und eine Realisierung eines Entzerrers experimentell untersucht. / In this thesis, several methods for the enhancement of the tolerance of optical transmission systems are analyzed theoretically, investigated in numerical simulations and evaluated in experiments and field trials. The investigations were thereby focused on receiver sided electronic and optical equalizers. Those devices improve the signal transmission by increasing the eye-opening at the receiver or by reconstructing the original signal from the distorted received signal by the use of digital signal processing. However, this thesis is focused on the investigation of different equalizers on a system level where the performance of a complete transmission system consisting of a transmitter, transmission fiber and receiver is evaluated. For those studies a simulation environment was created using the programming language FORTRAN where the different equalizers were evaluated in different network scenarios. For practical investigations, a test environment was created using the deployed fiber infrastructure and specific equalizer realization were evaluated experimentally.
399

Multiplexed optical fibre sensors for civil engineering applications

Childs, Paul, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2007 (has links)
Fibre-optic sensors have been the focus of a lot of research, but their associated high cost has stifled their transferral from the laboratory to real world applications. This thesis addresses the issue of multiplexing, a technology that would lower the cost per unit sensor of a sensor system dramatically. An overview of the current state of research of, and the principles behind, multiplexed sensor networks is given. A new scheme of multiplexing, designated W*DM, is developed and implemented for a fibre Bragg grating (FBG) optical fibre sensor network. Using harmonic analysis, multiplexing is performed in the domain dual to that of the wavelength domain of a sensor. This scheme for multiplexing is compatible with the most commonly used existing schemes of WDM and TDM and thus offers an expansion over, and a resultant cost decrease from, the sensor systems currently in use. This research covered a theoretical development of the scheme, a proof of principle, simulated and experimental analysis of the performance of the multiplexed system, investigation into sensor design requirements and related issues, fabrication of the sensors according to the requirements of the scheme and the successful multiplexing of eight devices (thus offering an eightfold increase over current network capacities) using this scheme. Extensions of this scheme to other fibre sensors such as Long Period Gratings (LPGs) and blazed gratings were also investigated. Two LPGs having a moir?? structure were successfully multiplexed and it was shown that a blazed Fabry Perot grating could be used as a tuneable dual strain/refractive index sensor. In performing these tests, it was discovered that moir?? LPGs exhibited a unique thermal switching behaviour, hereto unseen. Finally the application of fibre sensors to the civil engineering field was investigated. The skill of embedding optical fibre in concrete was painstakingly developed and the thermal properties of concrete were investigated using these sensors. Field tests for the structural health monitoring of a road bridge made from a novel concrete material were performed. The phenomenon of shrinkage, creep and cracking in concrete was investigated showing the potential for optical fibre sensors to be used as a viable research tool for the civil engineer.
400

Triple photons through third-order nonlinear optics / Triplets de photons à base d'optique non linéaire du troisième ordre

Borne, Adrien 22 September 2014 (has links)
Ce travail porte sur la génération directe de triplets de photons par interaction optique non linéaire du troisième ordre avec la matière solide. Les trois photons constituant l'état triplet proviennent de la scission d'un unique photon, et sont donc étroitement corrélées. Des champs supplémentaires peuvent stimuler le processus, et ainsi augmenter son efficacité de conversion, mais au détriment de la conservation des corrélations de l'état triplet. Deux stratégies sont adoptées pour générer efficacement ces triplets tout en conservant leurs propriétés de cohérence. La première porte sur génération de triplets dans des oxydes massifs cristallins, rendue possible à travers la réalisation d'accords de phase par biréfringence. Ces cristaux peuvent être placés en cavité de manière à augmenter artificiellement la longueur d'interaction. Dans ce contexte, KTP et TiO2 sous sa forme rutile sont étudiés expérimentalement; la configuration en cavité fait l'objet d'une étude théorique. La seconde stratégie se concentre sur la génération de triplets dans des fibres optiques, à travers un accord de phase modal. Leurs longueurs, le confinement du champ électromagnétique, ainsi que la non-existence de processus quadratiques pouvant polluer la génération de triplets sont des avantages importants. Des expériences de génération de troisième harmonique dans des fibres de silice dopées germanium sont réalisées ; et les propriétés d'accord de phase dans des fibres à cristaux photoniques en chalcogénures sont calculées. / This work concentrates on the direct generation of triple photons through third-order nonlinear optical interactions with solid-state matter. The three photons constituting the triplet state arise from the splitting of a single photon, and are therefore highly correlated.The four interacting particles fulfill the energy and linear momentum conservation laws. Additional fields can stimulate this process and thus increase its conversion efficiency, but at the cost of losing the correlations of the triplet states. In order to generate efficiently the triplets while preserving their coherence properties, two strategies are investigated. In the first one, the interaction occurs in oxide bulk crystals, thanks to a birefringent phase matching. These crystals can be put into a cavity so as to artificially increase the interaction length. In this context, KTP and rutile TiO2 are studied experimentally; the cavity configuration is subjected to a theoretical work. The second strategy focuses on the generation in optical fibers, through a modal phase matching. Their length, the confinement of the electromagnetic field, and the non-existence of polluting second-order nonlinear processes are key advantages. Third-harmonic generation experiments on germanium-doped silica fibers are performed; and phase-matching properties in chalcogenide photonic-crystal fibers are calculated.

Page generated in 0.1057 seconds