Spelling suggestions: "subject:"fiber grating"" "subject:"liber grating""
1 |
Characteristics, Applications, and Properties of Carbon-Dioxide-Laser-Induced Long-Period Fiber GratingsBachim, Brent Leland 23 June 2005 (has links)
Long-period fiber gratings (LPFGs) are typically fabricated by exposing photosensitive optical fiber to ultraviolet light. However, LPFGs can be fabricated by a variety of other techniques, including exposure to carbon-dioxide (CO2) laser light. The physical process by which the refractive-index change is induced in an optical fiber during exposure to CO2 laser light gives CO2-laser-induced LPFGs unique properties when compared to more traditional LPFGs fabricated by exposure to UV light. As such, CO2-laser-induced LPFGs respond differently to external perturbations and useful behavior has been observed, including variable attenuation tuning at a constant wavelength and wavelength tuning at constant amplitude with applied flexure.
In order to manipulate, harness, and enhance the unique features of CO2-laser-induced LPFGs, it is necessary to understand their physical properties and optical characteristics. The main objectives of the research presented in this thesis are to quantify experimentally the optical performance of CO2-laser-induced LPFGs with respect to flexure, torsion, and variable incident polarization, to characterize grating cross-sectional refractive-index profiles, and to demonstrate applications of CO2-laser-induced LPFGs that exploit their unique properties.
As part of the investigation of the effects of asymmetry, the fabrication and basic transmission characteristics of CO2-laser-induced LPFGs were examined. The polarization-dependent transmission characteristics, specifically polarization-dependent loss and polarization mode dispersion, of CO2-laser-induced LPFGs were investigated. The unique behavior of the gratings in response to applied flexure and applied torsion was also explored. Example variable optical attenuator, optical tunable filter, and fiber-to-waveguide coupler devices illustrate the potential advantages of the asymmetric index profile present in CO2-laser-induced LPFGs for certain applications. A new cross-sectional refractive-index profiling technique was presented that enables measurement of profiles containing small and irregular index variations. The profiling technique was used to measure the cross-sectional refractive-index profiles of optical fiber exposed to CO2 laser light. Future areas of research concerning CO2-laser-induced LPFGs were identified and discussed.
|
2 |
Stimulated emission depletion microscopy with optical fibersYan, Lu 10 March 2017 (has links)
Imaging at the nanoscale and/or at remote locations holds great promise for studies in fields as disparate as the life sciences and materials sciences. One such microscopy technique, stimulated emission depletion (STED) microscopy, is one of several fluorescence based imaging techniques that offers resolution beyond the diffraction-limit. All current implementations of STED microscopy, however, involve the use of free-space beam shaping devices to achieve the Gaussian- and donut-shaped Orbital Angular Momentum (OAM) carrying beams at the desired colors –-- a challenging prospect from the standpoint of device assembly and mechanical stability during operation. A fiber-based solution could address these engineering challenges, and perhaps more interestingly, it may facilitate endoscopic implementation of in vivo STED imaging, a prospect that has thus far not been realized because optical fibers were previously considered to be incapable of transmitting the OAM beams that are necessary for STED.
In this thesis, we investigate fiber-based STED systems to enable endoscopic nanoscale imaging. We discuss the design and characteristics of a novel class of fibers supporting and stably propagating Gaussian and OAM modes. Optimization of the design parameters leads to stable excitation and depletion beams propagating in the same fiber in the visible spectral range, for the first time, with high efficiency (>99%) and mode purity (>98%).
Using the fabricated vortex fiber, we demonstrate an all-fiber STED system with modes that are tolerant to perturbations, and we obtain naturally self-aligned PSFs for the excitation and depletion beams. Initial experiments of STED imaging using our device yields a 4-fold improvement in lateral resolution compared to confocal imaging. In an experiment in parallel, we show the means of using q-plates as free-space mode converters that yield alignment tolerant STED microscopy systems at wavelengths covering the entire visible spectrum, and hence dyes of interest in such imaging schematics.
Our study indicates that the vortex fiber is capable of providing an all-fiber platform for STED systems, and for other imaging systems where the exploitation of spatio-spectral beam shaping is required.
|
3 |
Design and fabrication of long-period fibre gratings and wavelength-selective couplers for wavelength-division multiplexing networksKritzinger, Ronnie 12 March 2012 (has links)
D.Ing. / Optical fibre-based devices (e.g. fibre gratings) play an important role in the optical com- munications and sensing industry. One type of fibre grating, the long-period grating (LPG), is becoming more and more popular as a simple and versatile component for a multitude of applications in optical engineering. The sensitivity of LPGs to various external perturbations and their ability to manipulate selectively light propagating in optical fibres make them well- suited to creating fibre-based devices. LPGs can be used in various applications, for example as gain equalisers for erbium-doped fibre amplifiers, as channel routers in optical add-drop multiplexers and as sensors. LPGs are typically fabricated by exposing photosensitive optical fibre to ultraviolet light. However, a variety of other techniques can be used to fabricate LPGs, including exposure to carbon dioxide (CO2) laser light. Over the years, it has become evident that CO2 laser- induced LPGs exhibit unique properties and features that can be harnessed to develop devices for important applications. It is necessary to understand the physical properties and optical characteristics of CO2 laser-induced LPGs to harness, manipulate and enhance their features. Research has been conducted on the development of an automated fabrication system that produces axially symmetric LPGs in single-mode fibre with a CO2 laser. A detailed study was undertaken on the design of uniform and non-uniform LPGs for wavelength-division multiplexing networks, as well as the characterisation of the CO2 laser beam propagating in the LPG fabrication system. These LPGs have been designed, using either analysis or syn- thesis techniques. The polarisation-dependent loss of the LPGs has also been investigated. Wavelength-selective couplers (WSCs) have been constructed using CO2 laser-induced LPGs and it was shown that these couplers were e®ective but not efficient in routing power to the output port of the tapping fibre. The physical properties, optical transmission characteris- tics, applications and other related issues of CO2 laser-induced LPGs have been investigated and satisfactory experimental results have been obtained. Areas for potential future research concerning CO2 laser-induced LPGs have been identified and discussed.
|
4 |
Modelování a optimalizace komplexních vláknových difrakčních struktur / Modelling and Optimization of Complex Fiber Diffractive StructuresHelán, Radek January 2009 (has links)
The thesis discusses the fiber Bragg gratings simulations, analysis and design. In the present time, there are several methods to simulate fiber gratings response based on the stated parameters that define their dimensions and material features. However, this work deals with a different issue, that is the synthesis of the input parameters for demanded spectral responses. The main aim of the work is to achieve a synthesis method that would help to discover parameters describing advanced grating structure, based on the required spectral reflectivity. The basic demand for the parameter synthesis is an achievement of the real values in terms of the consequent production of the suggested structure. The described synthesis method considers advanced fiber grating structure as a structure of several uniform grating sections. The input parameters are estimated in steps, using the well-known direct methods in order to obtain grating responses and feedback to establish the parameters changes. The principle methods involve establishment of initial input parameter values and necessary subsequent algorithm leading to optimize the required spectral response. The initial values are calculated by a simplified model based on the coupled theory equations that are handled for the periodic disturbances in cylindrical waveguide. The following optimization uses the multiple thin film stack and transfer matrix methods. The properties of grating structure spectral reflectivity are step by step calculated while using these direct methods. Input parameters are established in the next several steps. Establishment of input parameters is done subsequently, based on the demanded and calculated output spectral reflectivity properties. Optimizing process is limited by possibilities of the grating manufacture technology. It is possible to assemble arbitrary fiber grating structure taking in term the demanded spectral response. Nevertheless, the calculated input parameters are real for the following manufacture. This method could be used to design optical band stop filter, high-pass and low-pass filters or filters for special applications.
|
5 |
Ionic Self-Assembled Multilayers in a Long Period Grating Sensor for Bacteria and as a Source of Second-Harmonic Generation Plasmonically Enhanced by Silver NanoprismsMccutcheon, Kelly R. 12 July 2019 (has links)
Ionic self-assembled multilayers (ISAMs) can be formed by alternately dipping a substrate in anionic and cationic polyelectrolytes. Each immersion deposits a monolayer via electrostatic attraction, allowing for nanometer-scale control over film thickness. Additionally, ISAM films can be applied to arbitrary substrate geometries and can easily incorporate a variety of polymers and nanoscale organic or inorganic inclusions. The ISAM technique was used to tune and functionalize a rapid, sensitive fiber optic biosensor for textit{Brucella}, a family of bacteria that are detrimental to livestock and can also infect humans. The sensor was based on a turn-around point long period fiber grating (TAP-LPG). Unlike conventional LPGs, in which the attenuation peaks shift wavelength in response to environmental changes, TAP-LPGs have a highly sensitive single wavelength peak with variable attenuation. ISAMs were applied to a TAP-LPG to tune it to maximum sensitivity and to facilitate cross-linking of receptor molecules. Biotin and streptavidin were used to attach biotinylated hybridization probes specific to distinct species of textit{Brucella}. The sensor was then exposed to lysed cell cultures and tissue samples in order to evaluate its performance. The best results were obtained when using samples from textit{Brucella} infected mice, which produced a transmission change of 6.0 ± 1.4% for positive controls and 0.5 ± 2.0% for negative controls. While the sensor was able to distinguish between positive and negative samples, the relatively short dynamic range of the available fiber limited its performance. Attempts to fabricate new TAP-LPGs using a CO2 laser were unsuccessful due to poor laser stability. A second application of the ISAM technique was as a source of second-harmonic generation (SHG). SHG is a nonlinear optical process in which light is instantaneously converted to half its wavelength in the presence of intense electric fields. Localized surface plasmons (LSPs) in metal nanoparticles produce strong electric field enhancements, especially at sharp tips and edges, that can be used to increase SHG. Colloidally grown silver nanoprisms were deposited onto nonlinear ISAM films and conversion of 1064 nm Nd:YAG radiation to its 532 nm second-harmonic was observed. Little enhancement was observed when using nanoprisms with LSP resonance near 1064 nm due to their large size and low concentration. When using shorter wavelength nanoprisms, enhancements of up to 35 times were observed when they were applied by immersion, and up to 1380 times when concentrated nanoprisms were applied via dropcasting at high enough densities to broaden their extinction peak towards the excitation wavelength. A maximum enhancement of 2368 times was obtained when concentrated silver nanoprisms with LSP resonance around 900 nm were spincast with an additional layer of PCBS. / Doctor of Philosophy / Polyelectrolytes are long molecules composed of chains of charged monomers. When a substrate with a net surface charge is dipped into an oppositely charged polyelectrolyte solution, a single layer of molecules will be electrostatically deposited onto the substrate. Because the surface charge now appears to match the charge of the solution, no further deposition occurs. However, the process can be repeated by rinsing the substrate and immersing in a solution with the opposite charge. This technique forms ionic self-assembled multilayers (ISAMs), which can be assembled with nanometer-level control over thickness. The flexibility of polymer chemistry allows ISAMs to be formed from polyelectrolytes with a wide variety of properties. Additionally, the technique can easily incorporate other nanoscale materials, such as nanoparticles, clay platelets, and biological molecules, and has been investigated for applications ranging from dye-sensitized organic solar cells to drug delivery and medical implant coatings. This dissertation presents two applications of ISAM films. In one, ISAM films were used to tune and functionalize an optical biosensor for Brucella. Brucellosis primarily infects livestock, in which it causes significant reproductive problems leading to economic losses, but can also cause flu-like symptoms and more serious complications in humans. A rapid, sensitive test for Brucella is required to monitor herds and adjacent wild carriers, such as elk and bison. Optical biosensors, which operate by detecting changes due to the interaction between light and the stimulus, could satisfy this need. Long period fiber gratings (LPGs) are periodic modulations induced in the core of an optical fiber that cause transmitted light to be scattered at a resonant wavelength, resulting in attenuation. Conventional LPGs respond to changes in strain, temperature, or external refractive index by shifting their resonant wavelength. When special conditions are met, an LPG may exhibit a turn-around point (TAP), where dual peaks coalesce into a single peak with a constant wavelength but variable attenuation depth. TAP-LPGs are more sensitive than ordinary LPGs, and could be developed into inexpensive sensors with single-wavelength light sources and detectors. In this work, ISAMs were deposited onto an LPG to tune it near its TAP. Segments of single-stranded DNA, called hybridization probes, that were specific to individual species of Brucella were attached to the ISAM film before the sensor was exposed to lysed bacterial cultures. It was found that the sensor could distinguish between Brucella and other types of bacteria, but was less successful at distinguishing between Brucella species. The project was limited by the available TAP-LPGs, which had less dynamic range than those used in prior work by this group. Attempts were made to establish a new supply of TAP-LPGs by fabrication with a CO2 laser, but these efforts were unsuccessful due to poor laser stability. The second project discussed in this dissertation investigated ISAM films as a source of second-harmonic generation (SHG), a nonlinear optical process in which light is converted to half its fundamental wavelength in the presence of intense electric fields. Nonlinear ISAMs were constructed by choosing a polyelectrolyte with a hyperpolarizable side group in which SHG can occur. The SHG efficiency was increased by factors of several hundred to several thousand by the addition of silver nanoprisms. Metal nanoparticles can produce strong electric field enhancements, especially at their tips and edges, when incident light causes resonant collective oscillations in their electrons called localized surface plasmons (LSPs). It was found that while silver nanoprisms whose LSP resonant wavelength matched the fundamental wavelength were too dilute to produce noticeable enhancement, better results could be obtained by depositing shorter wavelength nanoprisms at sufficient density to broaden their extinction peak via interparticle interactions. The best enhancement observed was for a sample where concentrated silver nanoprisms with LSP resonance around 900 nm were dropcast onto an ISAM film and coated with an additional polymer layer, resulting in 2368 times more SHG than the plain ISAM film.
|
Page generated in 0.0999 seconds