Spelling suggestions: "subject:"fiber orientation"" "subject:"liber orientation""
31 |
The Effects of Fiber Orientation State of Extrusion Deposition Additive Manufactured Fiber-Filled Thermoplastic PolymersPasita Pibulchinda (9012281) 25 June 2020 (has links)
<p>Extrusion
Deposition Additive Manufacturing (EDAM) is a process in which fiber-filled
thermoplastic polymers are mixed and melted in an extruder and deposited onto a
build plate in a layer-by-layer basis. Anisotropy caused by flow-induced
orientation of discontinuous fibers along with the non-isothermal cooling
process gives rise to internal stresses in printed parts which results in part
deformation. The deformation and residual stresses can be abated by modifying
the fiber orientation in the extrudate to best suit the print geometry. To that
end, the focus of this research is on understanding the effect of fiber
orientation state and fiber properties on effective properties of the printed
bead and the final deformation of a part. The properties of three different
orientation tensors of glass fiber-filled polyamide and carbon fiber-filled
polyamide were experimentally and virtually characterized via micromechanics. A
thermo-mechanical simulation framework developed in ABAQUS© was used to
understand the effects of the varying fiber orientation tensor and fiber
properties on the final deformation of printed parts. In particular, a
medium-size geometry that is prone to high deformation was simulated and
compared among the three orientation tensors and two material systems. This
serves to be a good preliminary study to understand microscopic properties induced
deformations in EDAM.</p>
|
32 |
Entwicklung eines Verfahrens zur zerstörungsfreien Messung der Faserorientierung in mehrlagigen 3D-Carbonfaserpreforms und CFK mit robotergeführter Hochfrequenz-WirbelstromprüftechnikBardl, Georg 02 May 2019 (has links)
Carbonfaserverstärkten Kunststoffen (CFK) erzielen ihre herausragende Festigkeit und Steifigkeit durch exakte Anpassung der Faserverläufe im Bauteil an die im Einsatz wirkenden Belastungen. Für eine Qualitätskontrolle und eine Optimierung der Fertigungsverfahren ist daher ein Verfahren notwendig, das in der Lage ist, die Faserorientierung in 3D-Preforms (mehrlagigen, drapierten Vorformlingen aus trockenen Carbonfasern) und 3D-CFK zerstörungsfrei zu messen und mit der Soll-Faserorientierung zu vergleichen. Die derzeit für die Faserorientierungsmessung eingesetzten optischen bzw. Röntgen-CT-Verfahren sind hierfür nur beschränkt geeignet, da optische Verfahren auf die oberste Lage und Röntgen-CT-Verfahren auf Kleinproben beschränkt sind.
In dieser Arbeit wird daher ein Verfahren entwickelt, das die Faserorientierung in mehrlagigen 3D-Carbonfaserpreforms und -CFK zerstörungsfrei messen kann. Grundlage hierfür ist die Hochfre-quenz-Wirbelstromprüfung, die eine Darstellung der Verläufe der leitfähigen Carbonfäden in den einzelnen, übereinander gestapelten Lagen des CFK erlaubt. Um hierauf aufbauend eine vollauto-matische Faserorientierungsmessung zu schaffen, wird in einem ersten Schritt ein Roboter-Bahnplanungsverfahren zur vollständigen Erfassung komplex geformter 3D-Oberflächen entwi-ckelt. Aus dem erhaltenen 3D-Wirbelstrombild der Oberfläche wird anschließend über einen auf lokaler Abwicklung und Fouriertransformation beruhenden Algorithmus die lokale Faserorientie-rung in den einzelnen Lagen gemessen und die 3D-Verläufe einzelner Fäden werden rekonstruiert.
Die Messunsicherheit des Verfahrens wird anhand systematischer experimenteller Untersuchungen an 2-, 4-, 6- und 8-lagigen 2D-Gelegestapeln quantifiziert. Untersucht wird hierbei auch der Einfluss der Materialparameter (Gelegetyp) sowie der Messparameter (Spulenanordnung, Spulendurch-messer, Sensororientierung, Messfrequenz) auf die sich ergebende Messunsicherheit, woraus Empfehlungen für die Wahl von Sensor und Messfrequenz abgeleitet werden.
Das entwickelte Messverfahren wird anschließend an zwei 3D-Anwendungsfällen validiert. Als erster Anwendungsfall wird ein vierlagiges, komplex geformtes CFK-Bauteil betrachtet. Es wird gezeigt, wie mithilfe des entwickelten Messverfahrens die Faserorientierung aller vier Lagen zerstörungsfrei erfasst werden kann. Verschiedene Exemplare desselben Bauteils werden hinsicht-lich der Faserorientierung verglichen. Anschließend wird im zweiten Anwendungsfall ein automati-scher Drapierprozess zu einer Halbkugel betrachtet, bei dem verschiedene, ein-, zwei und vierlagi-ge textile Halbzeuge hinsichtlich der sich ausbildenden Faserorientierung nach der Drapierung verglichen werden, mit dem Ziel, das Verformungsverhalten mehrlagiger Strukturen besser zu verstehen und Empfehlungen für die Halbzeugauswahl abzuleiten.
In einem abschließenden Schritt werden Schnittstellen geschaffen, um die Faserorientierungsmes-sung in den CFK-Entwicklungsprozess zu integrieren. Zum einen wird durch eine Schnittstelle zur Drapiersimulation ein quantitativer Vergleich zwischen vorausgesagter und Ist-Faserorientierung möglich, zum anderen wird gezeigt, wie die gemessenen Faserorientierungen der Einzellagen direkt zur Parametrierung von Struktursimulationen verwendet werden können. Das entwickelte Verfah-ren ermöglicht damit eine fundierte Festigkeits- und Steifigkeitsanalyse mit den zerstörungsfrei gemessenen Faserorientierungen nach dem Umformprozess.:1 Einleitung
2 Grenzen bestehender Verfahren zur Faserorientierungsmessung bei der CFK-Herstellung
3 Stand der Technik zur Wirbelstromprüfung von Carbonfasermaterialien
4 Entwicklung einer Roboter-Bahnplanung zur vollständigen Erfassung einer 3D-Oberfläche
5 Entwicklung einer Faserorientierungsmessung aus 3D-Wirbelstromdaten
6 Experimentelle Untersuchung der Messunsicherheit an 2D-Gelegestapeln
7 Verfahrenserprobung an mehrlagigen 3D-Preforms und CFK
8 Integration der Faserorientierungsmessung in den CFK-Entwicklungsprozess
9 Zusammenfassung und Ausblick / The superior strength and stiffness of carbon fiber reinforced plastics (CFRP) results from an exact adaptation of the component’s fiber orientation to the external loads during service. Quality control, as well as development and optimization of the production processes, thus require a method to non-destructively measure the fiber orientation in 3D preforms (draped multilayer stacks made of dry carbon fibers) and CFRP. Currently, this fiber orientation measurement is done by optical or X-ray computer tomography methods, which are limited, however to the uppermost, optical visible fabric layer (optical methods) or to small sample sizes (X-ray computer tomography).
Therefore, this thesis develops a method to non-destructively measure the 3D fiber orientation in multi-layer 3D preforms and CFRP. The starting point for this development is the technique of high-frequency eddy current testing, which allows an imaging of the individual carbon yarn courses in multiple stacked textile layers. In order to develop a fully-automated fiber orientation measure-ment process with this technique, in a first step a robot path planning is developed that allows the complete scanning of a complexly-shaped 3D surface with an eddy current sensor. From the resulting 3D eddy current image of the surface, the local fiber orientation of the individual layers is measured by local development (flattening) of the surface and a Fourier transformation.
The uncertainty of measurement for this method is quantified from experiments with 2-, 4-, 6- and 8-layer 2D non-crimp fabric stacks. The influence of the material parameters (type of fabric) as well as of the measurement parameters (sensor type, coil diameter, sensor orientation, measure-ment frequency) is evaluated. Recommendations for the choice of sensor and measurement frequency are derived.
The developed measurement method is subsequently validated with two different 3D application cases. As a first application case, a four-layer, complexly-shaped CFRP component is analyzed. It is shown how the developed measurement method can be used to non-destructively measure the fiber orientation of all four layers. Different specimen of the same CFRP component are compared regarding fiber orientation. The second application case is an automated draping process to a hemispherical shape, for which one-, two- and four-layer textile fabrics are compared regarding the fiber orientation after draping, in order to better understand the forming properties of multi-layer structures and derive recommendations for the choice of textile.
In the final step, software interfaces are developed to integrate the fiber orientation measurement into the CFRP design and development process. It is integrated with a draping simulation, to allow a quantitative comparison of the predicted and the measured fiber orientations. Furthermore, it is shown how the measured fiber orientation of the individual fabric layers can be used for the parametrization of finite element structural simulations. The developed measurement method thus lays the base for a substantiated strength and stiffness analysis based on the component’s actual as-is fiber orientation after the draping process.:1 Einleitung
2 Grenzen bestehender Verfahren zur Faserorientierungsmessung bei der CFK-Herstellung
3 Stand der Technik zur Wirbelstromprüfung von Carbonfasermaterialien
4 Entwicklung einer Roboter-Bahnplanung zur vollständigen Erfassung einer 3D-Oberfläche
5 Entwicklung einer Faserorientierungsmessung aus 3D-Wirbelstromdaten
6 Experimentelle Untersuchung der Messunsicherheit an 2D-Gelegestapeln
7 Verfahrenserprobung an mehrlagigen 3D-Preforms und CFK
8 Integration der Faserorientierungsmessung in den CFK-Entwicklungsprozess
9 Zusammenfassung und Ausblick
|
33 |
An experimental-analytical scale-linking study on the crack-bridging mechanisms in different types of SHCC in dependence on fiber orientationCurosu, Iurie, Muja, Erjon, Ismailov, Mansur, Hamza Ahmed, Ameer, Liebscher, Marco, Mechtcherine, Viktor 04 March 2023 (has links)
A scale-linking, experimental study complemented by an analytical model was carried out to investigate the influence of fiber orientation on the crack-opening behavior of strain-hardening cement-based composites (SHCC). Three SHCC compositions were investigated with polyvinyl alcohol (PVA) and ultra-high molecular weight polyethylene (UHMWPE) fibers in combination with normal- and high-strength matrices. The micromechanical experiments with fiber inclinations of 0◦, 30◦, 45◦, and 60◦ involved fiber embedment in plain and fiber-reinforced specimens. The experimentally derived micromechanical parameters were input into an analytical crack-bridging model to assess the upscaling accuracy of the micromechanical results by comparing the predicted crack-bridging laws to the single-crack opening behavior of equivalent miniature SHCC specimens
with controlled fiber orientation. This study yields new insights into the effect of fiber orientation on the crackbridging properties of different types of SHCC, assesses the link between micromechanical and composite scale properties, offers a solid experimental basis for refining the analytical models, and developing anisotropic materials models for SHCC in dependence on fiber orientation.
|
34 |
Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipesGemi, L., Koroglu, M.A., Ashour, Ashraf 21 December 2017 (has links)
Yes / This paper investigates the strength and ductility of concrete confined by Glass/Epoxy ±55° Filament Wound Pipes (GFRP) under axial compression. A total of 24 cylinderical specimens were prepared with expansive and Portland cements, properly compacted and un-compacted for different composite fresh concrete matrix. Test results showed that compressive strength and axial deformation at failure of concrete confined with GFRP tubes increased by an average of 2.85 and 5.57 times these of unconfined concrete, respectively. Macro and micro analyses of GFRP pipes after failure were also investigated. Debonding, whitening, matrix/transfer cracking, delamination and splitting mechanisms were detected at failure, respectively. The experimental results were also employed to assess the reliability of design models available in the literature for confined concrete compressive strength.
|
35 |
Evaluation of a computational method for natural fiber-reinforced plastics / Bedömning av en beräkningsmetod för naturfiberförstärkta plasterLim, Anna January 2023 (has links)
The importance of using natural fiber composites (NFCs) has been addressed as a substitution for synthetic fibers, such as glass and carbon fibers. This substitution contributes significantly to reducing greenhouse gas emissions, aligning with the environmental responsibilities of engineering industries. Wood fiber(WF) is one of the natural fibers (NFs) dominating the market in various businesses. As an excellent alternative to non-renewable sources, the demand for injection-molded applications using natural fiber-reinforced plastics has expanded across various sectors. Despite extensive prior research on the mechanical properties of WFs, there remains a need for a deeper understanding of the connection between fiber orientation and mechanical characteristics. This understanding is essential for developing computational methods aimed at ensuring structural integrity, cost-efficiency, and sustainability in real-world components. This study aims to evaluate coupled injection molding simulation to finite element method with mapping of fiber orientation tensor for a wood fiber composite (WFC). To achieve this, WFC’s mechanical properties and behavior under tensile loading conditions are investigated. The research methodology involves conducting uniaxial tensile testing on dog bone-shaped specimens at different fiber orientations (0 degrees, 45 degrees, and 90 degrees). Experimental data is collected, analyzed, and compared with the obtained results with numerical simulations to validate the accuracy of the models used. Additionally, the aspect ratio and volume fraction of the WFs are measured through both mathematical calculations and image analysis using MATLAB. The main contribution of this study can be summarized in two key observations. Firstly, the investigation of mechanical characteristics across different fiber orientations has revealed distinct patterns. Specimens aligned at 0 degrees exhibit noticeable differences in behavior compared to those at 45 and 90 degrees, highlighting the material's anisotropic nature. Secondly, the comparison between experimental data and computational simulations exhibits the effectiveness of the developed models. The close agreement between the two validates the accuracy of the predictive approach. Moreover, the consistent aspect ratio, volume fraction, and fiber orientation value obtained through both mathematical calculations and image analysis add credibility to the reliability of our measurements. Notably, the comparison with glass fibers (GFs) reveals that WFs exhibit considerably less breakage, highlighting their durability and potential suitability for various applications. / Betydelsen av att använda naturfiberkompositer har behandlats som en ersättning för syntetiska fibrer, såsom glas- och kolbaserade fibrer. Denna substitution bidrar betydligt till att minska utsläpp av växthusgaser och överensstämmer med ingenjörsbranschens miljöansvar. Träfiber är en av de naturfibrer som dominerar marknaden inom olika branscher. Som ett utmärkt alternativ till icke-förnybara källor har efterfrågan på formsprutade applikationer med naturfiberförstärkta plaster ökat inom olika sektorer. Trots omfattande tidigare forskning om träfibrers mekaniska egenskaper finns det fortfarande ett behov av en djupare förståelse för sambandet mellan fiberns orientering och dess mekaniska egenskaper. Denna förståelse är avgörande för att utveckla beräkningsmetoder som syftar till att säkerställa strukturell integritet, kostnadseffektivitet och hållbarhet i komponenter i den verkliga världen. Denna studie syftar till att utvärdera kopplad formsprutningssimulering med ändelementmetod och kartläggning av fibrernas orienteringstensor för en träfiberkomposit. För att uppnå detta undersöks träfiberkompositens mekaniska egenskaper och beteende under dragbelastningsförhållanden. Forskningsmetodiken innefattar genomförande av enaxlig dragprovning på hundbenformade provkroppar vid olika fibrers orientering (0 grader, 45 grader och 90 grader). Experimentella data samlas in, analyseras och jämförs med de erhållna resultaten från numeriska simuleringar för att validera modellernas noggrannhet. Dessutom mäts träfibrernas aspektratio och volymfraktion genom både matematiska beräkningar och bildanalys med hjälp av MATLAB. Huvudbidraget från denna studie kan sammanfattas i två centrala iakttagelser. För det första har undersökningen av mekaniska egenskaper vid olika fibrers orienteringar avslöjat tydliga mönster. Prover som är riktade i 0 grader uppvisar märkbara skillnader i beteende jämfört med de vid 45 och 90 grader, vilket understryker materialets anisotropa natur. För det andra visar jämförelsen mellan experimentella data och beräkningsmässiga simuleringar effektiviteten hos de utvecklade modellerna. Den nära överensstämmelsen mellan de båda validerar noggrannheten i den prediktiva metoden. Dessutom lägger de konsekventa värdena för aspektratio, volymfraktion och fibrernas orientering som erhållits genom både matematiska beräkningar och bildanalys trovärdighet till våra mätningar. Det bör noteras att jämförelsen med glasfiber visar att träfibrer uppvisar betydligt mindre brytning, vilket betonar deras hållbarhet och potentiella lämplighet för olika tillämpningar.
|
36 |
Experimental Evaluation and Simulations of Fiber Orientation in Injection Molding of Polymers Containing Short Glass FibersVelez-Garcia, Gregorio Manuel 22 May 2012 (has links)
Injection molded short fiber reinforced composites have generated commercial interest in the manufacturing of lightweight parts used in semi-structural applications. Predicting these materials’ fiber orientation with quantitative accuracy is crucial for technological advancement, but the task is difficult because of the effect of inter-particle interactions at high concentrations of fiber found in parts of commercial interest.
A complete sample preparation procedure was developed to obtain optical micrographs with optimal definition of elliptical and non-elliptical footprint borders. Two novel aspects in this procedure were the use of tridimensional markers to identify specific locations for analysis and the use of controlled-etching to produce small shadows where fibers recede into the matrix. These images were used to measure fiber orientation with a customized image analysis tool. This tool contains several modifications that we introduced in the method of ellipses which allow us to determine tridimensional fiber orientation and to obtain measurements in regions with fast changes in orientation. The tool uses the location of the shadow to eliminate the ambiguity problem in orientation and characterizes non-elliptical footprints to obtain the orientation in small sampling areas.
Cavitywise measurements in two thin center-gated disks showed the existence of an asymmetric profile of orientation at the gate and an orientation profile that washed out gradually at the entry region until disappearing at about 32 gap widths. This data was used to assess the prediction of cavitywise orientation using a delay model for fiber orientation with model parameters obtained from rheometrical experiments. Model predictions combining slip correction and experimentally determined orientation at the gate are in agreement with experimental data for the core layers near the end-of-fill region.
Radialwise measurements of orientation at the shell, transition and core layer, and microtextural description of the advancing front are included in this dissertation. The analysis and assessment of the radial evolution of fiber orientation and advancing front based on comparing the experimental data with simulation results are under ongoing investigation. / Ph. D.
|
37 |
Improvement in Orientation Predictions of High-Aspect Ratio Particles in Injection Mold Filling SimulationsMazahir, Syed Makhmoor 08 May 2013 (has links)
Glass fiber based polymer composites based injection molded parts provide a light-weight high-strength alternative for use in automobile applications. These composites have enhanced mechanical properties compared to those of pure polymers, if the fibers are oriented in the right direction. One of the major challenges in processing of these composites is to control the fiber orientation in the final product.
The evolution of short glass fiber orientation in a center-gated disk was experimentally determined along the radial direction at three different heights representative of the shell, transition and core layers, respectively. Orientation data along the shell and transition layers in the lubrication region show shear flow effects, which tends to align the fibers along the flow direction. In the core layer, where the extension in the "-direction dominates, fibers tend to get aligned along the "-direction. In the frontal flow region orientation in the flow direction drops in all three layers due to fountain flow effects.
Fiber orientation predictions in coupled and decoupled transient simulations using the Folgar-Tucker model, and the two slow versions of the Folgar-Tucker model, namely the slip Folgar-Tucker model and the reduced strain closure (RSC) model were compared with the experimental data. Measured inlet orientation was used in all simulations and model parameters were determined by fitting model predictions to rheological data under startup of shear. Pseudo-concentration method was implemented for the modeling of the advancing front and fountain flow effects in the region near the front. Discontinuous Galerkin finite element method and a third order Runge-Kutta total variance diminishing time integration scheme were implemented for the solution of the orientation and transport equations. In the lubrication region of the shell layer, all three orientation models provided a good match with the experimental data. In the frontal region, fountain flow simulations showed characteristic features seen in r- and z-profiles of orientation, although the experimental data showed these features at a relatively larger distance behind the front while the simulations predicted these effects only up to a small distance behind the front. On the other hand, orientation predictions with the Hele-Shaw flow approximation showed significant over-predictions in the frontal region. With model parameters determined from fitting to rheological data, coupling did not show any significant improvements. However, with the use of a smaller value of the fiber interaction parameter, coupling showed significant improvement in orientation predictions in all three layers in the frontal region.
The simulation scheme was extended to long fiber systems by comparing available long fiber orientation data in a center-gated disk with model predictions using the Bead-Rod model which considers fiber bending, a property exhibited by long semi-flexible fibers. The Bead-Rod model showed improvements over rigid fiber models in the lubrication region of the shell layer. However, close to the front, both models showed similar predictions. In fountain flow simulations, the flow features seen in the r- and z-profiles were much better predicted with both the models while Hele-Shaw flow approximation showed over-prediction of orientation in the flow direction, especially in the shell layer. / Ph. D.
|
38 |
Projeto de transdutores piezocompósitos de casca multi-camada utilizando o método de otimização topológica. / Design of piezocomposite multi-layered shell transducers using the topology optimization method.Kiyono, César Yukishigue 15 January 2013 (has links)
Transdutores baseados em cascas piezocompósitas têm uma vasta aplicação no campo de estruturas inteligentes, principalmente como atuadores, sensores e coletores de energia. Essas estruturas piezocompósitas são geralmente compostas por dois ou mais tipos de materiais, como por exemplo materiais piezelétricos, ortotrópicos elásticos (possuem fibras de reforçamento) e isotrópicos (materiais homogêneos). Vários fatores devem ser considerados no projeto de transdutores baseados em cascas piezocompósitas, como o tamanho, a forma, a localização e a polarização do material piezelétrico, bem como a orientação das fibras do material ortotrópico. O projeto desses transdutores é complexo e trabalhos anteriores envolvendo esses tipos de materiais sugerem utilizar Método de Otimização Topológica (MOT) para aprimorar o desempenho dos transdutores distribuindo o material piezelétrico sobre substratos fixos de materiais isotrópicos e ortotrópicos, ou otimizar a orientação das fibras dos materiais ortotrópicos com material piezelétrico com tamanho, forma e localização previamente estabelecidos. Assim, nesta tese, propõe-se o desenvolvimento de uma metodologia baseada no MOT para projetar transdutores piezocompósitos de casca considerando, simultaneamente, a otimização da distribuição e do sentido de polarização do material piezelétrico, e também a otimização da orientação das fibras de materiais ortotrópicos, que é livre para assumir valores diferentes ao longo da mesma camada compósita. Utilizando essa metodologia, são obtidos resultados numéricos para atuadores e sensores em regime estático e para coletores de energia com circuito elétrico acoplado, em regime dinâmico amortecido. Para os casos dos sensores e dos coletores de energia, também são consideradas as tensões mecânicas na estrutura, as quais devem obedecer os critérios de von Mises (para materiais isotrópicos) e de Tsai-Wu (para materiais ortotrópicos) para que não haja falhas na estrutura, que está sujeita a esforços mecânicos. / Transducers based on laminated piezocomposite shell structures have a wide application in the field of smart structures, especially as actuators, sensors and energy harvesting devices. These piezocomposite structures are generally composed by two or more kinds of materials, such as piezoelectric, isotropic, and elastic orthotropic (fiber reinforcement) materials. Several factors must be considered in the design of piezocomposite transducers, such as size, shape, location and polarization of the piezoelectric material and the fiber orientation of the orthotropic material. The design of these transducers is complex and previous studies involving these types of materials suggest using \"Topology Optimization Method\" (TOM) to enhance the performance of piezoelectric transducers by distributing piezoelectric material over fixed isotropic and orthotropic substrate or to optimize the fiber orientation of orthotropic materials with piezoelectric patches previously established. Thus, this thesis proposes the development of a methodology based on the TOM to design laminated piezocomposite shell transducers by considering simultaneously the optimization of distribution and the polarization direction of the piezoelectric material, and also the optimization of the fiber orientation orthotropic material, which is free to assume different values along the same composite layer. By using this methodology, numerical results are obtained for actuators and sensors under static response, and energy harvesting devices with an electrical circuit coupled, in dynamic damped analysis. In the case of sensors and energy harvesting devices, which are subjected to mechanical loads, the mechanical stresses in the structure are also considered, which must satisfy two stress criteria to prevent failure: von Mises for isotropic materials and Tsai-Wu for orthotropic materials.
|
39 |
Shear and shear friction of ultra-high performance concrete bridge girdersCrane, Charles Kennan 06 July 2010 (has links)
Ultra-High Performance Concrete (UHPC) is a new class of concrete characterized by no coarse aggregate, steel fiber reinforcement, low w/c, low permeability, compressive strength exceeding 29,000 psi (200 MPa), tensile strength ranging from 1,200 to 2,500 psi (8 to 17 MPa), and very high toughness. These properties make prestressed precast UHPC bridge girders a very attractive replacement material for steel bridge girders, particularly when site demands require a comparable beam depth to steel and a 100+ year life span is desired.
In order to efficiently utilize UHPC in bridge construction, it is necessary to create new design recommendations for its use. The interface between precast UHPC girder and cast-in-place concrete decks must be characterized in order to safely use composite design methods with this new material.
Due to the lack of reinforcing bars, all shear forces in UHPC girders have to be carried by the concrete and steel fibers. Current U.S. codes do not consider fiber reinforcement in calculating shear capacity. Fiber contribution must be accurately accounted for in shear equations in order to use UHPC.
Casting of UHPC may cause fibers to orient in the direction of casting. If fibers are preferentially oriented, physical properties of the concrete may also become anisotropic, which must be considered in design.
The current research provides new understanding of shear and shear friction phenomena in UHPC including:
*Current AASHTO codes provide a non-conservative estimate of interface shear performance of smooth UHPC interfaces with and without interface steel.
*Fluted interfaces can be created by impressing formliners into the surface of plastic UHPC. AASHTO and ACI codes for roughened interfaces are conservative for design of fluted UHPC interfaces.
*A new equation for the calculation of shear capacity of UHPC girders is presented which takes into account the contribution of steel fiber reinforcement.
*Fibers are shown to preferentially align in the direction of casting, which significantly affects compressive behavior of the UHPC.
|
40 |
Characterization and Simulation of Material Distribution and Fiber Orientation in Sandwich Injection Molded PartsPatcharaphun, Somjate 09 October 2006 (has links) (PDF)
In this work, the material distribution, structure of fiber orientation and fiber attrition in
sandwich and push-pull injection molded short fiber composites are investigated, regarding the
effect of fiber content and processing parameters, given its direct relevance to mechanical
properties. The prediction of the tensile strength of conventional, sandwich and push-pull
injection molded short fiber composites are derived by an analytical method of modified rule of
mixtures as a function of the area fraction between skin and core layers. The effects of fiber
length and fiber orientation on the tensile strength are studied in detail. Modeling of the
specialized injection molding processes have been developed and performed with the simulation
program in order to predict the material distribution and the fiber orientation state. The secondorder
orientation tensor (a11) approach is used to describe and calculate the local fiber
orientation state. The accuracy of the model prediction is verified by comparing with
corresponding experimental measurements to gain a further basic understanding of the melt flow
induced fiber orientation during sandwich and push-pull injection molding processes.
|
Page generated in 0.0956 seconds