• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 54
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 224
  • 224
  • 224
  • 58
  • 57
  • 53
  • 52
  • 42
  • 36
  • 34
  • 32
  • 30
  • 30
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Aplica??o do m?todo das diferen?as finitas energ?ticas na modelagem do concreto refor?ado com fibras curtas de a?o sob flex?o

Neves, J?lia Barbosa 24 September 2013 (has links)
Submitted by Verena Bastos (verena@uefs.br) on 2015-08-05T21:29:18Z No. of bitstreams: 1 NEVES_JB_2012_R2.pdf: 2142681 bytes, checksum: 2f1f8d4679734685ccd9edf621f7b8c4 (MD5) / Made available in DSpace on 2015-08-05T21:29:18Z (GMT). No. of bitstreams: 1 NEVES_JB_2012_R2.pdf: 2142681 bytes, checksum: 2f1f8d4679734685ccd9edf621f7b8c4 (MD5) Previous issue date: 2013-09-24 / Funda??o de Amparo ? Pesquisa do Estado de S?o Paulo - FAPESP / The prediction of the reinforced concrete beams behavior under bending is essential to design these elements. Usually the models do not incorporate the concrete stress contribution, which may underestimate the structural element strain that use steel fiber reinforced concrete (SFRC) under permanent or temporary loads. This work presents a variational formulation based on the finite difference energy method (EFDM) in predicting the flexural behavior of concrete beams reinforced, that uses SFRC. The proposed model uses the classical lamination theory (CLT) with a damage model (Mazars, 1984) applied to the SFRC. The reinforcement was considered as a layer of a perfect elastic-plastic material. Comparing the load-displacement numerical results with those of the literature to reinforced concrete beams demonstrates the consistency of the proposed model. / A previs?o do comportamento de vigas de concreto armado sob flex?o ? fundamental para o adequado dimensionamento destes elementos. Usualmente, os modelos n?o incorporam a contribui??o do concreto tracionado, o que pode subestimar as deforma??es no elemento estrutural que utilizem o concreto refor?ado com fibras (CRFA) sob cargas de curta e longa dura??o. No presente trabalho ? apresentada uma formula??o variacional com base no m?todo das diferen?as finitas energ?ticas (MDFE) para a previs?o do comportamento ? flex?o de vigas de concreto simples ou armado refor?adas com fibras de a?o. O modelo proposto combina a teoria cl?ssica de laminados (TCL) com um modelo de dano (Mazars, 1984) aplicado ao concreto. O refor?o (armadura longitudinal) foi considerado como uma l?mina de um material elasto-pl?stico perfeito. A compara??o dos resultados num?ricos com resultados encontrados na literatura para vigas de concreto armado, em termos de cargadeslocamento, demonstra a coer?ncia do modelo proposto.
202

Structural Behaviour of Self Consolidating Steel Fiber Reinforced Concrete Beams

Cohen, Michael I. 26 July 2012 (has links)
When subjected to a combination of moment and shear force, a reinforced concrete (RC) beam with either little or no transverse reinforcement can fail in shear before reaching its full flexural strength. This type of failure is sudden in nature and usually disastrous because it does not give sufficient warning prior to collapse. To prevent this type of shear failure, reinforced concrete beams are traditionally reinforced with stirrups. However, the use of stirrups is not always cost effective since it increases labor costs, and can make casting concrete difficult in situations where closely-spaced stirrups are required. The use of steel fiber reinforced concrete (SFRC) could be considered as a potential alternative to the use of traditional shear reinforcement. Concrete is very weak and brittle in tension, SFRC transforms this behaviour and improves the diagonal tension capacity of concrete and thus can result in significant enhancements in shear capacity. However, one of the drawbacks associated with SFRC is that the addition of fibers to a regular concrete mix can cause problems in workability. The use of self-consolidating concrete (SCC) is an innovative solution to this problem and can result in improved workability when fibers are added to the mix. The thesis presents the experimental results from tests on twelve slender self-consolidating fiber reinforced concrete (SCFRC) beams tested under four-point loading. The results demonstrate the combined use of SCC and steel fibers can improve the shear resistance of reinforced concrete beams, enhance crack control and can promote flexural ductility. Despite extensive research, there is a lack of accurate and reliable design guidelines for the use of SFRC in beams. This study presents a rational model which can accurately predict the shear resistance of steel fiber reinforced concrete beams. The thesis also proposes a safe and reliable equation which can be used for the shear design of SFRC beams.
203

Shear in Steel Fiber Reinforced Concrete Members without Stirrups

Shoaib, Abdoladel Unknown Date
No description available.
204

Untersuchungen zum Biegetragverhalten von Stahlfaserbeton und betonstahlbewehrtem Stahlfaserbeton unter Berücksichtigung des Einflusses von Stahlfaserart und Betonzusammensetzung

Müller, Torsten 28 January 2015 (has links) (PDF)
Auf der Basis der Bemessungsgrundlagen (DAfStb-Richtlinie „Stahlfaserbeton“, DBV-Merkblatt „Stahlfaserbeton“ und DIN 1045-1) wurden ausgewählte Bauteilversuche mit entsprechenden rechnerischen Überprüfungen der experimentell ermittelten Ergebnisse durchgeführt. Die Untersuchungen konzentrierten sich auf die Ermittlung der Effizienz von ausgewählten Stahlfasern in Betonen mit und ohne Betonstahlbewehrung in durch Biegung ohne Längskraft belasteten Versuchskörpern unter Betrachtung der Grenzzustände der Gebrauchstauglichkeit (GZG) und Tragfähigkeit (GZT). Das Versuchsprogramms umfasste neben der Prüfung ausgewählter Frischbetoneigenschaften die Bestimmung von Festbetonparametern an standardisierten Probekörpern. Des Weiteren wurden 4-Punkt-Biegezugversuche an Balken mit den Abmessungen l/h/b = 70/15/15 cm aus reinem Stahlfaserbeton sowie stahlfaserbewehrtem Stahlbeton, in Anlehnung an das DBV-Merkblatt „Stahlfaserbeton“ und die Richtlinie „Stahlfaserbeton“ vom DAfStb, durchgeführt. Aufbauend auf den Erkenntnissen aus den Materialversuchen im Labormaßstab wurden anschließend Untersuchungen an großformatigen Biegebalken (l/h/b = 420/40/20 cm) durchgeführt. Im Weiteren erfolgten Prüfungen und Auswertungen von Einzelfaserausziehversuchen mit ausgewählten Stahldrahtfasern in Verbindung mit Betonen unterschiedlicher Druckfestigkeit unter Berücksichtigung des Einflusses der Einbindelänge sowie des Einbindewinkels. Im Rahmen des Versuchsprogramms wurden die auf der Grundlage der 4-Punkt-Biegezugversuche ermittelten Ergebnisse analysiert und mit dem derzeit gültigen Bemessungsmodell nach DAfStb-Richtlinie „Stahlfaserbeton“ rechnerisch überprüft. Auf der Basis dieser Ergebnisse erfolgte die Entwicklung eines Ansatzes zur Optimierung der bestehenden Bemessungsansätze. Gegenstand dieser Forschungsarbeit war ebenfalls die Entwicklung eines Fasermodells, mit dem man auf der Grundlage des eingesetzten Fasergehaltes und der Faserart Rückschlüsse auf die Faseranzahl in einer rechteckigen Bruchfläche ziehen kann. Hierbei wurde ein Modell für Rechteckquerschnitte entwickelt, welches es ermöglicht, die durchschnittliche Faseranzahl in einer Bruchfläche, auf der Basis vereinfachter Annahmen, abzuschätzen. Die Verifizierung des Modells erfolgte durch den Vergleich der errechneten Faseranzahl mit zahlreichen experimentellen Versuchsergebnissen. Im letzten Abschnitt dieser Arbeit wurde die Herleitung bzw. Generierung von Bemessungshilfsmitteln zur Biegebemessung von Stahlfaserbeton mit und ohne Betonstahlbewehrung behandelt. Die Ausführungen beziehen sich dabei auf dimensionslose Bemessungstafeln und Interaktionsdiagrammen für Rechteckquerschnitte.
205

[en] INFLUENCE OF STEEL FIBERS IN THE MECHANICAL BEHAVIOR AND CRACKING MECHANISMS OF SELF-CONSOLIDATING CONCRETES / [pt] INFLUÊNCIA DE FIBRAS DE AÇO NO COMPORTAMENTO MECÂNICO E NOS MECANISMOS DE FISSURAÇÃO DE CONCRETOS AUTOADENSÁVEIS

ERIC VALLOTTI PEREIRA 18 September 2017 (has links)
[pt] No presente trabalho foi investigado o comportamento mecânico de um concreto autoadensável reforçado com fibras de aço. Foram utilizadas fibras de aço torcidas e com ganchos, nos comprimentos de 25, 30 e 60 mm e diâmetros de 0,5, 0,62 e 0,75 mm. Para cada uma destas fibras e para cada uma das frações volumétricas investigadas (0,5, 1,0 e 2,0 por cento) foram realizados os ensaios de flexão em quatro pontos em corpos de prova prismáticos e de tração direta em corpos de prova do tipo dog bone shaped. Nos ensaios de flexão, os índices de tenacidade e as cargas residuais foram contabilizados. Alternativamente, determinou-se a energia absorvida nos ensaios de flexão de painéis circulares conforme a ASTM C1550, cuja abertura de fissuras foi medida com o auxílio de transdutores de deslocamento. Os corpos de prova reforçados com fibras de aço submetidos à tração direta se mostraram mais dúcteis com relação à matriz de concreto autoadensável, observando-se grande influência do volume e comprimento ancorado das fibras nas cargas residuais da zona de pós-fissuração. Nos ensaios de flexão, observaram-se grandes incrementos na tenacidade e deformações correspondentes às cargas residuais. Por fim, analisou-se a influência desses concretos no comportamento de vigas armadas sujeitas à flexão. A evolução da abertura de fissuras foi monitorada com sistema de correlação digital de imagens, sendo posteriormente correlacionadas com cargas aplicadas e com os deslocamentos obtidos nos ensaios. Observou-se nestes ensaios, que o reforço fibroso aumentou a capacidade de carga e a rigidez à flexão, atrasando consideravelmente o surgimento de fissuras. / [en] In the present work the mechanical behavior of a self-consolidating concrete reinforced with steel fibers was investigated. Twisted and hooked end steel fibers were used in lengths of 25, 30 and 60 mm and diameters of 0.5, 0.62 e 0.75 mm. For each of these fibers and for each volumetric fractions investigated (0.5, 1.0 and 2.0 percent), the four-point bending tests on prismatic specimens and direct tensile in dog bone shape specimens were performed. In the flexural tests, the toughness and residual strengths were computed. Alternatively, the energy absorption capacity in the round panel tests was determined following the ASTM C1550. During the test the crack opening was measured through displacement transducers. The steel fiber reinforced concrete subject to direct tensile loading was more ductile than the self-consolidating concrete matrix, showing a high influence of the volume and embedded length of the fibers in the residual loads in the post-cracking zone. In the bending tests, a large increase in the toughness and strains corresponding to the residual loads were observed. Finally, the influence of the fiber reinforced concretes on the behavior of reinforced beams subject to bending was investigated. The evolution of the crack openings was monitored with a digital image correlation system and correlated to the applied load and displacements. It was observed in these tests that the fibrous reinforcement considerably increased the load capacity and flexural stiffness, delaying the crack growth.
206

Contribuições ao dimensionamento de torres eólicas de concreto. / Contributions to design of concrete wind towers.

Paulo Vitor Calmon Nogueira da Gama 20 May 2015 (has links)
O trabalho dedica-se ao estudo das torres eólicas protendidas de concreto, com a finalidade de promover a discussão sobre os critérios de dimensionamento, tema de grande relevância na atualidade. Para tal, foi considerada uma torre eólica de 100 m de altura provida de turbina de 5 MW, cujas ações foram obtidas da literatura. O carregamento de vento ao longo da torre foi tratado como estático equivalente de acordo com disposições normativas, através de uma forma simplificada para a adoção de uma velocidade de projeto equivalente à incidente no rotor. Com base na literatura, apenas as condições mais críticas foram adotadas no dimensionamento. As combinações entre os carregamentos e os coeficientes parciais de segurança foram delineados a partir do método dos estados limites, o qual se encontra amplamente difundido em normas de projeto. Os esforços e deslocamentos na torre foram obtidos pelo método dos elementos finitos com discretização em elementos finitos unidimensionais, considerando as não linearidades física e geométrica por intermédio do acoplamento de um programa comercial de elementos finitos com algoritmo desenvolvido em linguagem MATLAB, que tanto define as diversas geometrias de cada elemento ao longo da torre (seção variável), como obtém para cada um: a armadura ativa longitudinal a partir de perdas de protensão recalculadas, o diagrama momento-curvatura-força normal, e a armadura passiva longitudinal escalonada, que é otimizada durante o processo do dimensionamento. Quanto à resistência ao esforço cortante das seções anulares, foi proposto um modelo que apresentou boa concordância com os resultados experimentais obtidos na literatura. Além dos concretos convencionais, é discutido o estado-da-arte do concreto de ultra-alto desempenho reforçado com fibras, CUADRF, tratando sobre seu desenvolvimento histórico, composição, diferentes tipos, propriedades mecânicas, aplicações, recomendações para projeto e as simplificações adotadas quanto ao seu uso nas torres eólicas. Ao final foram realizadas análises paramétricas relativas à geometria e à classe de concreto para dois tipos de torres: em tronco de cone e de variação parabólica. Uma das principais conclusões do trabalho é que a otimização da área de aço passivo ocorre de forma sistemática para as torres de frequência natural mais baixa, tornando indispensável o uso de um modelo não linear para o correto dimensionamento. Além disso, as torres obtidas foram comparadas através do custo material total, constatando-se que as torres mais econômicas possuíam variação parabólica. Isso permitiu aferir um valor inicial para o qual o uso do CUADRF em torres eólicas passaria a ser competitivo. / The work is dedicated to the study of prestressed wind towers of concrete, in order to promote discussion on the design criteria, highly relevant topic today. For this purpose, it was considered a wind tower 100 m high provided with 5 MW turbine, whose actions were obtained from the literature. The wind loading along the tower was treated as static equivalent in accordance with design codes, through a simplified way for the adoption of a design speed equivalent to that incident on the rotor. Based on the literature, only the most critical conditions were adopted in the design. The combinations between loads and partial safety factors were outlined by the limit states method, which is widespread in design standards. The forces and displacements in the tower were obtained by the finite element method with discretization in frame elements, through material and geometric nonlinearities. This was done through coupling of a commercial finite element program with algorithm developed in MATLAB language, which defines both the various geometries of each element along the tower (variable section), and obtains for each: prestressing reinforcement from recalculated prestressing losses, the moment-curvature-normal diagram, and the stepped longitudinal passive reinforcement that is optimized during the design process. For the shear strength of the annular sections, a model that showed good agreement with the experimental results obtained in the literature was proposed. In addition to conventional concrete, the state-of-the art of ultra-high performance fiber reinforced concrete, UHPFRC, is discussed, dealing on its historical development, composition, different types, mechanical properties, applications, recommendations for design and simplifications adopted on its use in wind towers. At the end were performed parametric analyzes of the geometry and the concrete class for two types of towers: frustoconical and with parabolic variation. One of the main conclusions is that the optimization of passive steel area occurs systematically to the lower natural frequency towers, making it essential to use a nonlinear model for proper design. Moreover, the towers obtained were compared with the total material cost, having noticed that most economical towers had parabolic variation for the constraints here imposed. This allowed the assessment of an initial value for which the use of UHPFRC in wind turbine towers would be competitive.
207

Aplicação de laminado de polímero reforçado com fibras de carbono (PRFC) inserido em substrato de microconcreto com fibras de aço para reforço à flexão de vigas de concreto armado / Application of carbon fiber reinforced polymer (CFRP) strips inserted in a steel fiber reinforced concrete layer (NSM - Near Surface Mounted) for flexural strengthening of reinforced concrete beams

Ana Paula Arquez 07 May 2010 (has links)
O reforço de elementos estruturais de concreto armado com uso de polímeros reforçados com fibras de carbono (PRFC) está cada vez mais conhecido, seguro e acessível. Em todo o mundo, a aplicação do PRFC vem sendo estudada sob diversas técnicas. Características como elevada resistência à tração e à corrosão, baixo peso, facilidade e rapidez de aplicação são os principais fatores para essa disseminação. Em particular, a técnica aqui estudada é conhecida como Near Surface Mounted (NSM), que consiste na inserção de laminados de PRFC em entalhes realizados no concreto de cobrimento de elementos de concreto armado. Com dupla área de aderência, ela vem a suprir uma deficiência comum no reforço colado externamente, que é o seu destacamento prematuro. Como nas demais técnicas de reforço à flexão, o material é colado na região do concreto tracionado. Sabe-se que, na prática da intervenção, essa região frequentemente encontra-se danificada por razões diversas, como fissuração causada por ações externas, corrosão da armadura e deterioração do concreto, o que exige a sua prévia reparação. Considerando que a boa qualidade desse reparo é imprescindível à eficiência do reforço, propõe-se uma inovação técnica pela reconstituição da face tracionada da viga com um compósito cimentício de alto desempenho, que sirva como substrato para aplicação do PRFC e elemento de transferência de esforços à estrutura a ser reforçada. Produzido à base de cimento Portland, fibras e microfibras de aço, o compósito tem também potencial para retardar a abertura de fissuras e aumentar a rigidez da viga, melhorando o aproveitamento do reforço. Com apoio da mecânica do fraturamento, foi possível encontrar as taxas de fibras e microfibras de aço a serem adicionadas a uma matriz cimentícia especialmente desenvolvida. Foram realizados ensaios de aderência para estudar o processo de transferência de tensões cisalhantes do laminado para o compósito na zona de ancoragem da viga. Uma vez conhecido o comportamento do sistema, foram ensaiadas vigas de concreto armado de tamanho representativo de estruturas reais, em três diferentes versões de ancoragem do laminado, sendo duas delas com uso do compósito cimentício. Comprovou-se a eficiência da inovação proposta, constatando-se o aumento da rigidez e da capacidade de carga da viga reforçada, com excelente aproveitamento do laminado. Além disso, as fibras e microfibras diminuíram a abertura das fissuras em estágios mais avançados de carregamento, sem que se observasse fissuras horizontais próxima ao reforço, que poderiam indicar destacamento iminente do laminado de PRFC. / Strengthening of reinforced concrete elements with carbon fiber reinforced polymer (CFRP) is increasingly well known, safe and accessible. The application of CFRP has been studied worldwide using various techniques. Features like high tensile strength, corrosion resistance, lightweightness and easy and speedy application are the main factors for dissemination. In particular, the technique here analyzed is known as Near Surface Mounted (NSM), which involves inserting CFRP strips into grooves made on the concrete cover of reinforced concrete elements. With double bonding area, this technique avoids the premature peeling-off that usually takes place in externally bonded CFRP reinforcement. As in others flexural strengthening techniques, the material is bonded in the concrete tension region. It is known in strengthening practice that this region usually requires prior repair. Often it shows up damaged by several reasons such as cracking caused by external actions, reinforcement corrosion and deterioration of the concrete. Whereas the good quality of this repair is essential to strengthening efficiency, an innovative technique is proposed. A high-performance cementitious composite is used as a transition layer for insertion of CFRP strips. The composite is made of Portland cement, steel fibers and microfibers of steel. It also has the potential to delay crack opening and to increase the beam stiffness. Based on fracture mechanics, it was possible to find suitable volume fractions of steel fibers and microfibers to be added to the cementitious matrix. Bonding tests were performed to analyze the shear stress transferring from the CFRP laminate to the beam anchorage zone. Once known the system behavior, real size reinforced concrete beams were tested in three different versions of the anchorage conditions, two of them with use of cementitious composites. The efficiency of the proposed innovation was proved by confirming increased stiffness and load capacity of the strengthened beam. In addition, fibers and microfibers allowed the decrease of the crack opening in later loading steps. No horizontal cracks near to the reinforcement were noticed, which means that CFRP laminate peeling-off was not likely to occur.
208

Avaliação da influência do direcionamento de fibras de aço no comportamento mecânico de concreto autoadensável aplicado em elementos planos. / Evaluation of the influence of steel fiber orientation in mechanical behavior of self-compacting concrete applied to slabs.

Ricardo dos Santos Alferes Filho 14 October 2016 (has links)
O uso de fibra de aço como reforço no concreto tem sido objeto de várias pesquisas recentes. Com o surgimento do concreto autoadensável reforçado com fibras, a fluidez do concreto aumenta a possibilidade de orientação das fibras na etapa de concretagem, o que pode trazer alterações significativas no comportamento mecânico do concreto endurecido. O objetivo deste trabalho foi verificar a influência das condições de moldagem sobre a resistência residual pós-fissuração de elementos planos moldados com concreto autoadensável reforçados com fibra de aço. Também foi objetivo deste trabalho verificar previamente a combinação de ensaios reológicos com métodos convencionais para controle e caracterização do concreto autoadensável no estado fresco. A caracterização do concreto foi feita com reometria rotacional, caixa-L e espalhamento. Os resultados apontam que o estudo da reologia do concreto é desejável e a combinação dos ensaios de reologia com ensaios convencionais pode trazer mais informações sobre o efeito da adição de fibras. Foram realizados ensaios de punção de placas para avaliar o comportamento mecânico de elementos planos produzidos com concreto lançado em posições distintas. A confirmação da orientação preferencial das fibras como causa da diferença de comportamento foi realizada através de informações obtidas com os ensaios indutivo e Double Edge Wedge Splitting (DEWS) realizados em testemunhos extraídos de placas moldadas sob as mesmas condições. Além disso, comprovou-se que a orientação preferencial gerada pelas condições de lançamento do concreto pode influenciar significativamente na resistência pós-fissuração de elementos estruturais planos. / The use of steel fiber as reinforcement in concrete has been the subject of several recent studies. With the development of self-compacting fiber reinforced concrete, the fluidity of the material could increase the possibility of orientation of fibers during the casting process. That condition could bring significant changes in the mechanical behavior of hardened fiber reinforced concrete. The aim of this study was to investigate the influence of the conditions of casting on the post-cracking residual strength of flat elements molded with self-compacting concrete reinforced with steel fibers. It was also an objective of this work verify previously the combination of rheological tests with conventional methods in order to control and characterize the self-compacting concrete in the fresh state. The characterization of the concrete in fresh state was made with rotational rheometer, L-box and spreading tests. The results showed that the study of the concrete rheology is desirable and combination of rheological tests with conventional testing can provide more information about the effect of fiber addition. The evaluation of the mechanical behavior of flat elements produced under different positions of casting was conducted through test panels submitted to punching loading. The confirmation of the orientation of the fibers as a cause of the difference in the behavior was accomplished through information obtained from the inductive and DEWS tests performed on extracted cores of panels molded under the same conditions. Furthermore, the preferred orientation caused by the concrete flow significant influence on the post-cracking strength of the structural flat elements was shown. The tests carried out with extracted cores endorsed the conclusion that the cause of performance variation is fundamentally linked to the preferred orientation, which is a result of the casting procedure.
209

Desenvolvimento de estratégias híbridas de reforço de pilares de concreto armado por encamisamento com compósitos de alto desempenho / Hybrid strategies development for strenghtening concrete columns jacketed with high performance composite

Alexandre Luis Sudano 20 August 2010 (has links)
Tradicionalmente no reforço de pilares de concreto armado são empregados materiais já consagrados, como as chapas de aço, o próprio concreto armado, e, mais recentemente, o polímero reforçado com fibras (PRF). Porém existem ainda alguns problemas associados a estes materiais ou, mais especificamente, às técnicas utilizadas para promover o reforço, destacando-se a dificuldade de execução, comportamento frágil e perda de área útil em função do aumento da seção transversal do pilar original. Por outro lado, o desenvolvimento da tecnologia dos materias e a constante inovação tecnológica tem como resultado a oferta de uma grande variedade de materiais com características orientadas à solução de um determinado problema. Cita-se como exemplo o concreto reforçado com fibras de aço, inicialmente desenvolvido para aplicação em elementos submetidos à flexão, mas que apresenta atributos, que se bem explorados, são desejáveis para aplicação no reforço de pilares. Busca-se neste trabalho desenvolver estratégias e técnicas de reforço que busquem potencializar o aproveitamento de todos os atributos oferecidos pelos materiais comumente empregados e desenvolver um concreto reforçado com fibras de aço com diferentes comprimentos que possibilite sua aplicação no reforço de pilares. Os resultados da análise experimental demonstram que a escolha do material, da estratégia e técnica de reforço são fatores decisivos para aliar o melhor aproveitamento dos materiais empregados e o atendimento às exigências de projeto. Conclui-se ainda que a associação de fibras de aço de diferentes comprimentos possibilita a utilização do concreto reforçado com fibras no reforço de pilares de concreto, tendo como grande virtude a facilidade de execução, se comparado com o concreto armado. / Tradicionally the strengthening of reinforced concrete columns uses materials well known, such as steel plates, the reinforced concrete, and, more recently, fiber reinforced polymer (FRP). But there are still some problems associated with these materials, or more specifically, with the used techniques, specially the difficulty of implementation, brittle behavior and loss free space due to the increase of the original cross section of the column. On the other hand, the materials technology development and the constant innovation has resulted in the provision of a wide variety of materials with specifics caracteristics to solving a particular problem. For example, steel fiber reinforced concrete, originally developed for use in elements subject to bending, but it has some attributes, which if are well explored, are desirable for use in strengthening columns. This work presents the development of strategies and techniques that optimize the o use all the attributes offered by the commonly used materials, and develop a different lengths steel fiber reinforced concrete to enable its application on columns strengthening. The results of experimental analysis show that the choice of material, strategy and technique of strengtheningt is a key factor to combine the best use of the materials used and the design requirements. It is also concluded that the combination of steel fibers of different lengths allows the use of steel fibers reinforced concrete on the strengthening of concrete columns, with the great virtue of the ease of implementation, compared to the reinforced concrete.
210

Development of a Lightweight Hurricane-Resistant Roof System

Amir Sayyafi, Ehssan 30 March 2017 (has links)
Roofs are the most vulnerable part of the building envelope that often get damaged when subjected to hurricane winds. Damage to the roofs has a devastating impact on the entire structure, including interior losses and service interruptions. This study aimed at the development of a novel light-weight composite flat roof system for industrial, commercial and multi-story residential buildings to withstand Category 5 hurricane wind effects based on the Florida Building Code requirements for hurricane-prone regions, the strictest wind design code in the United States. The proposed roof system is designed as a combination of two advanced materials: ultra-high performance concrete (UHPC), reinforced with high strength steel (HSS). The novel combination of these two materials in a specially designed cross section led to a lightweight low-profile ultra-thin-walled composite roof deck, with only 17 pounds per square foot self-weight, 4-inch overall depth and only ¾-inch thick flanges and webs, with no shear reinforcement or stirrup. Two groups of specimens, single-cell and multi-cell, were fabricated and tested in four-point flexure to determine the ultimate bending capacity and ductility of the system. Each group of specimens included two short-span (9 ft.) samples (due to the laboratory constraints) -- one specimen subjected to positive bending and the other one subjected to negative bending, representing the critical loading conditions including the effects of wind pressures. All specimens exhibited pure flexural failure in a ductile behavior and with no sign of shear failure. Finite element models of laboratory specimens were also developed and calibrated based on experimental data in order to project the performance of the system for larger and more realistic spans. The experimental work and the finite element analyses showed that the proposed roof system with its given section has adequate flexural and shear strength, and also meets serviceability requirements for a 20-foot long span. Moreover, connections for the roof system were proposed, including panel-to-panel connections and roof-to-wall connections. In addition to safety, the other advantages of the proposed roof system in comparison to the equivalent reinforced concrete roofs include a three-fold reduction in self-weight, a three-fold reduction in overall profile height, and a five-fold reduction of steel reinforcement. Together, these advantages may lead to an increased span length beyond what is typically feasible for the conventional reinforced concrete slabs. All these features translate the proposed deck to a sustainable roof system.

Page generated in 0.0873 seconds