• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MATERIAUX COMPOSITES A FIBRES COURTES. RELATION ENTRE FACTEUR D'ORIENTATION ET PROPRIETES MECANIQUES ET THERMIQUES /

BOUR, YVES. ROYER, FRANCOIS XAVIER.. January 1999 (has links) (PDF)
Thèse de doctorat : SCIENCES APPLIQUEES : Metz : 1999. / 1999METZ006S. 146 REF.
2

Structure et propriétés de fibres de nanotubes de carbone à haute énergie de rupture

Miaudet, P. 11 October 2007 (has links) (PDF)
Cette thèse rapporte l'étude de fibres composites nanotubes de carbone/polymère qui présentent des propriétés originales, dont notamment une très forte énergie de rupture potentiellement utile pour de futures applications balistiques. En effet, leur capacité d'absorption d'énergie est la plus importante jamais observée pour un matériau. Cette propriété est liée à la structure composite des fibres, qui est plus proche de celle des fibres naturelles comme la soie d'araignée, que de celle des fibres synthétiques hautes performances usuelles. La thèse présente des études de l'influence de modifications structurales sur les propriétés mécaniques, électriques et thermomécaniques des fibres, qui ont mis en évidence de nouvelles propriétés, comme des effets mémoire de forme et de température. Nous espérons que les résultats fondamentaux obtenus dans ce travail aideront au développement de diverses applications, notamment dans le domaine des textiles et matériaux de protection balistique.
3

Fibras curtas de Eucalipto para novas tecnologias em fibrocimento / Eucalyptus short fibres for new technologies in fibre-cement

Tonoli, Gustavo Henrique Denzin 19 January 2010 (has links)
Este trabalho avalia as vantagens do uso das fibras curtas de polpa de Eucalipto tanto como alternativa às fibras longas de polpa de Pinus, como também para fibras sintéticas, tradicionalmente usadas no reforço de materiais cimentícios. Os efeitos da morfologia (comprimento, largura, fibrilação, conteúdo de finos, número de fibras por grama, etc.) das fibras celulósicas no processamento, no desempenho mecânico e físico e na microestrutura dos compósitos de fibrocimento foram avaliados. Os compósitos foram avaliados antes e após ciclos de envelhecimento acelerado. Fibras de Eucalipto apresentaram melhor dispersão na matriz cimentícia e forneceram maior densidade de fibras em massa ou em volume, em relação às fibras de Pinus. As fibras curtas permitem um reforço efetivo da matriz frágil, diminuindo a propagação das fissuras, o que contribuiu para o melhor desempenho mecânico dos compósitos após envelhecimento. Estes resultados promissores mostram o potencial apresentado pelas fibras curtas de Eucalipto para reduzir custos, em vista da substituição parcial das fibras sintéticas em processos de cura ao ar, e durante o refino da polpa celulósica. O efeito do branqueamento das fibras também foi avaliado, e mostrou que as fibras branqueadas de Eucalipto são mais reativas para se ligarem por pontes de hidrogênio com a matriz cimentícia. Fibras branqueadas melhoraram a interface entre fibra e matriz, embora apresentassem mais sinais de mineralização (re-precipitação de produtos de hidratação dentro das fibras) do que as fibras não-branqueadas. O refino da polpa celulósica foi utilizado para modificar as propriedades morfológicas das fibras de Eucalipto e Pinus. Os resultados mostraram que são necessárias maiores intensidade de refino na polpa de Pinus para obter valores de retenção de sólidos do cimento similares àqueles obtidos com fibras não-refinadas de Eucalipto. O refino aumentou a capacidade das fibras de capturar as partículas minerais, melhorando a aderência das fibras com a matriz. Esta melhor interface entre fibra e matriz melhorou as propriedades mecânicas dos compósitos aos 28 dias de cura, mas os tornou mais frágeis após os ciclos de envelhecimento acelerado. A modificação química da superfície das fibras foi realizada com o objetivo de melhorar as ligações entre fibra e matriz e diminuir a mineralização da fibra dentro dos compósitos. Esta modificação química foi realizada com Metacriloxipropiltri-metoxisilano (MPTS) e Aminopropiltri-etoxisilano (APTS) e mostrou influenciar significativamente a microestrutura dos compósitos. Ciclos de envelhecimento acelerado diminuíram o módulo de ruptura (MOR) e a tenacidade (TE) dos compósitos com fibras não-modificadas e modificadas; entretanto, compósitos reforçados com fibras modificadas com MPTS apresentaram fibras sem produtos de hidratação do cimento em seu interior, enquanto que fibras modificadas com APTS apresentaram acelerada mineralização. Fibras mineralizadas tornam os compósitos mais frágeis após os ciclos de envelhecimento acelerado. Estas observações são, portanto, muito úteis para o entendimento da contribuição de diferentes condições das fibras (composição química, resistência mecânica, morfologia e propriedades de superfície) para os mecanismos de aderência entre fibras e matriz cimentícia, de mineralização das fibras e de degradação dos compósitos de fibrocimento. / This work evaluates the advantages of using hardwood short fibre pulp (Eucalyptus) as alternative to softwood long fibre pulp (Pinus) and synthetic fibres, traditionally used in reinforcement of cement based materials. The effects of cellulose fibre morphology (e.g., length, width, fibrillation, content of fines and number of fibres per gram) on the processing, on the mechanical and physical performance and on the microstructure of fibre-cement composites were evaluated. Composites were evaluated before and after accelerated ageing cycles. Eucalyptus pulp fibres were better dispersed in the cement matrix and provided higher number of fibres per unitary weight or volume, in relation to Pinus long fibre pulp. The short reinforcing elements lead to an effective crack bridging of the fragile matrix, which contributes to the improvement of the mechanical performance of the composite after ageing. These promising results show the potential of eucalyptus short fibres for reducing costs by both the partial replacement of expensive synthetic fibres in air curing process and the energy savings during pulp refining. The effects of pulp bleaching were also evaluated, and showed that Eucalyptus bleached fibres are more reactive to bond with the cement matrix by hydrogen bonds. Bleached fibres improved the fibre-matrix interface, although they presented more signals of fibre mineralization. Mechanical refining was used to change the morphological properties of Eucalyptus and Pinus pulps. Results show that high levels of refining were necessary for Pinus pulp to obtain cement retention values similar to those obtained by unrefined Eucalyptus pulp. The mechanical refining increased the capacity of the fibres to capture the mineral particles improving the adherence of the fibres with the matrix. This improved fibre-matrix interface led to better mechanical properties at 28 days of cure, but turned brittle the composites after 200 ageing cycles. The chemical surface modification of cellulose pulp fibres was done in order to improve fibre-matrix bonding and to decrease fibre mineralization into the composite. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) and showed significant influence on the microstructure of the composites. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites with unmodified and modified fibres, however composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the contribution of the different fibre conditions (chemical composition, mechanical strength, morphology and surface properties) to the mechanisms of fibre-matrix adherence, fibre mineralization and degradation of fibre-cement composites.
4

Fibras curtas de Eucalipto para novas tecnologias em fibrocimento / Eucalyptus short fibres for new technologies in fibre-cement

Gustavo Henrique Denzin Tonoli 19 January 2010 (has links)
Este trabalho avalia as vantagens do uso das fibras curtas de polpa de Eucalipto tanto como alternativa às fibras longas de polpa de Pinus, como também para fibras sintéticas, tradicionalmente usadas no reforço de materiais cimentícios. Os efeitos da morfologia (comprimento, largura, fibrilação, conteúdo de finos, número de fibras por grama, etc.) das fibras celulósicas no processamento, no desempenho mecânico e físico e na microestrutura dos compósitos de fibrocimento foram avaliados. Os compósitos foram avaliados antes e após ciclos de envelhecimento acelerado. Fibras de Eucalipto apresentaram melhor dispersão na matriz cimentícia e forneceram maior densidade de fibras em massa ou em volume, em relação às fibras de Pinus. As fibras curtas permitem um reforço efetivo da matriz frágil, diminuindo a propagação das fissuras, o que contribuiu para o melhor desempenho mecânico dos compósitos após envelhecimento. Estes resultados promissores mostram o potencial apresentado pelas fibras curtas de Eucalipto para reduzir custos, em vista da substituição parcial das fibras sintéticas em processos de cura ao ar, e durante o refino da polpa celulósica. O efeito do branqueamento das fibras também foi avaliado, e mostrou que as fibras branqueadas de Eucalipto são mais reativas para se ligarem por pontes de hidrogênio com a matriz cimentícia. Fibras branqueadas melhoraram a interface entre fibra e matriz, embora apresentassem mais sinais de mineralização (re-precipitação de produtos de hidratação dentro das fibras) do que as fibras não-branqueadas. O refino da polpa celulósica foi utilizado para modificar as propriedades morfológicas das fibras de Eucalipto e Pinus. Os resultados mostraram que são necessárias maiores intensidade de refino na polpa de Pinus para obter valores de retenção de sólidos do cimento similares àqueles obtidos com fibras não-refinadas de Eucalipto. O refino aumentou a capacidade das fibras de capturar as partículas minerais, melhorando a aderência das fibras com a matriz. Esta melhor interface entre fibra e matriz melhorou as propriedades mecânicas dos compósitos aos 28 dias de cura, mas os tornou mais frágeis após os ciclos de envelhecimento acelerado. A modificação química da superfície das fibras foi realizada com o objetivo de melhorar as ligações entre fibra e matriz e diminuir a mineralização da fibra dentro dos compósitos. Esta modificação química foi realizada com Metacriloxipropiltri-metoxisilano (MPTS) e Aminopropiltri-etoxisilano (APTS) e mostrou influenciar significativamente a microestrutura dos compósitos. Ciclos de envelhecimento acelerado diminuíram o módulo de ruptura (MOR) e a tenacidade (TE) dos compósitos com fibras não-modificadas e modificadas; entretanto, compósitos reforçados com fibras modificadas com MPTS apresentaram fibras sem produtos de hidratação do cimento em seu interior, enquanto que fibras modificadas com APTS apresentaram acelerada mineralização. Fibras mineralizadas tornam os compósitos mais frágeis após os ciclos de envelhecimento acelerado. Estas observações são, portanto, muito úteis para o entendimento da contribuição de diferentes condições das fibras (composição química, resistência mecânica, morfologia e propriedades de superfície) para os mecanismos de aderência entre fibras e matriz cimentícia, de mineralização das fibras e de degradação dos compósitos de fibrocimento. / This work evaluates the advantages of using hardwood short fibre pulp (Eucalyptus) as alternative to softwood long fibre pulp (Pinus) and synthetic fibres, traditionally used in reinforcement of cement based materials. The effects of cellulose fibre morphology (e.g., length, width, fibrillation, content of fines and number of fibres per gram) on the processing, on the mechanical and physical performance and on the microstructure of fibre-cement composites were evaluated. Composites were evaluated before and after accelerated ageing cycles. Eucalyptus pulp fibres were better dispersed in the cement matrix and provided higher number of fibres per unitary weight or volume, in relation to Pinus long fibre pulp. The short reinforcing elements lead to an effective crack bridging of the fragile matrix, which contributes to the improvement of the mechanical performance of the composite after ageing. These promising results show the potential of eucalyptus short fibres for reducing costs by both the partial replacement of expensive synthetic fibres in air curing process and the energy savings during pulp refining. The effects of pulp bleaching were also evaluated, and showed that Eucalyptus bleached fibres are more reactive to bond with the cement matrix by hydrogen bonds. Bleached fibres improved the fibre-matrix interface, although they presented more signals of fibre mineralization. Mechanical refining was used to change the morphological properties of Eucalyptus and Pinus pulps. Results show that high levels of refining were necessary for Pinus pulp to obtain cement retention values similar to those obtained by unrefined Eucalyptus pulp. The mechanical refining increased the capacity of the fibres to capture the mineral particles improving the adherence of the fibres with the matrix. This improved fibre-matrix interface led to better mechanical properties at 28 days of cure, but turned brittle the composites after 200 ageing cycles. The chemical surface modification of cellulose pulp fibres was done in order to improve fibre-matrix bonding and to decrease fibre mineralization into the composite. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) and showed significant influence on the microstructure of the composites. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites with unmodified and modified fibres, however composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the contribution of the different fibre conditions (chemical composition, mechanical strength, morphology and surface properties) to the mechanisms of fibre-matrix adherence, fibre mineralization and degradation of fibre-cement composites.
5

Contacteurs à membranes composites et contacteurs microporeux pour procédés gaz-liquide intensifiés de captage du CO2 en post-combustion : expérimentation et modélisation

Chabanon, Elodie 15 December 2011 (has links) (PDF)
La réduction des émissions de CO2 anthropique est un des enjeux majeurs du 21eme siècle pour de nombreux pays. De nombreux procédés sont développés pour le captage du CO2, parmi lesquels l'absorption gaz-liquide par contacteur membranaire. L'utilisation d'une membrane permet d'intensifier le transfert grâce à une aire interfaciale développée 2 à 10 fois plus élevée (1000 à 5000 m2.m-3) que celle d'une colonne d'absorption (procédé de référence). Deux types de fibres sont étudiées : microporeuses et composites. Dans une partie expérimentale, l'influence de la nature des matériaux, des paramètres géométriques et opératoires sur les propriétés de transfert de matière et sur la stabilité des performances de captage des contacteurs membranaires est étudiée. Les résultats obtenus pour des durées d'expérimentation courte (dizaine d'heures de temps de contact), sont en adéquation avec les résultats présents dans la littérature. Bien que l'ajout d'une peau dense à un support poreux constitue une résistance supplémentaire au transfert de matière, une étude dédiée, effectuée sur des temps de contact importants (plusieurs centaines d'heures), a permis pour la première fois de valider le concept de résistance au mouillage des fibres à peau dense, comparativement aux fibres microporeuses (PP et PTFE). Dans une partie modélisation, une étude comparative d'approches mathématiques de complexité croissante a été menée. Un seul paramètre ajustable a été délibérément retenu : le coefficient de transfert de matière dans la membrane (km). Cette étude a estimé des valeurs de km obtenues par ajustement des données expérimentales dans la plage de données rapportées dans la littérature (10-2 à 10-5 m.s-1). Cependant, l'hypothèse d'une valeur caractéristique du km qui dépend du régime de fonctionnement est posée et commentée. Cette approche diffère singulièrement des travaux rapportés dans la littérature, qui postulent le plus souvent une valeur unique pour un matériau membranaire donné. Dans ces conditions, l'intérêt des fibres composites, qui présentent une valeur constante et vraisemblablement prédictible du coefficient de transfert membranaire de par leur résistance aux phénomènes de mouillage, apparaît comme particulièrement prometteur pour intensifier les procédés de captage du CO2 en post-combustion par absorption gaz-liquide.
6

Étude expérimentale et modélisation d'un procédé de captage en CO2 en postcombustion par l'ammoniaque à l'aide de contacteurs membranaires : du matériau à l'évaluation de l'intensification de l'absorption / Experimental study and modeling of an ammonia based CO2 capture process using hollow fiber membrane contactors : from the material selection to the absorption intensification assessment

Makhloufi, Camel 06 December 2013 (has links)
L'absorption du CO2 à l'ammoniaque au sein d'une colonne garnie est une technologie prometteuse pour capter le CO2 en postcombustion. La fuite d'NH3 engendrée par la volatilité de ce solvant gêne néanmoins le déploiement de ce procédé. Dans cette étude, la faculté des contacteurs membranaires à permettre des performances d'absorption du CO2 intensifiées et des pertes en NH3 réduites par rapport au procédé conventionnel est évaluée. Pour cela, l'emploi de fibres composites innovantes constituées d'une peau dense assurant un transport sélectif du CO2 vis-à-vis de NH3 a été proposé. Compte tenu des propriétés de ces molécules, aucun matériau ne présentait jusqu'alors de sélectivité de séparation favorable au CO2. Des essais de temps-retards ont permis de révéler 6 matériaux fluorés présentant les propriétés de sélectivités inverses recherchées. Le Teflon AF2400, polymère hautement perméable au CO2, a été choisi pour constituer les fibres creuses composites employées lors d'expériences d'absorption. Leurs performances ont été comparées à celles de contacteurs commerciaux microporeux (Oxyphan) et composites (Oxyplus) pour différentes conditions opératoires. Alors qu'aucune expérience stable n'a pu être achevée avec les contacteurs microporeux du fait de la précipitation de sels d'ammonium, les contacteurs composites ont permis des performances de capture supérieures aux objectifs fixés. La modélisation 2D du transfert de matière a permis de révéler le rôle prépondérant du support microporeux dans les performances d'absorption observées. Enfin, une intensification élevée des performances d'absorption du CO2 et des pertes en NH3 fortement réduites par rapport au procédé conventionnel ont pu être démontrées / Aqueous ammonia as a solvent for post-combustion CO2 capture in a packed column is seen as a promising technology. Nevertheless, ammonia volatility is a considerable drawback for its large scale deployment. In this study, the ability of hollow fiber membrane contactors to significantly improve CO2 mass transfer performances while mitigating ammonia losses when compared to packed column is evaluated. In that purpose, the use of innovating composite fibers made of a thin dense layer selective for CO2 over NH3 is proposed. Up to now, a faster permeation of CO2 compared to NH3 in dense polymers was totally unexpected and to our knowledge unexplored. Time-lag experiments have revealed a series of 6 fluorinated structures showing the desired reverse selectivity properties. Teflon AF2400 has been selected as the dense skin of composite fibers used during absorption experiments. Their performances have been compared, for different operating conditions, to those given by commercial microporous (Oxyphan) and composite (Oxyplus) membrane contactors. Due to ammonium salt precipitation issues, no stable experiment has been achieved using microporous membrane contactors. At the opposite, absorption efficiencies higher than post-combustion capture standards have been reached using composite membrane contactors. 2D mass transfer modeling has revealed the controlling role of the microporous support in the observed absorption performances. Finally, high CO2 mass transfer intensification factor and drastically reduced ammonia losses have been shown
7

Fibres obtenues à partir de nanotubes de carbone verticalement alignés : élaboration et propriétés / Fibers obtained from vertically aligned carbon nanotube : development and properties

Debski, Nicolas 09 December 2014 (has links)
Les fibres à base de nanotubes de carbone (NTC), de par leurs propriétés électriques et mécaniques, sont des candidates potentielles pour des applications telles que les textiles fonctionnels ou les câbles conducteurs. A ce jour, deux familles de fibres, préparées selon des voies différentes, coexistent : les fibres contenant seulement des NTC et les fibres composites polymère/NTC. Les caractéristiques des NTC et les voies de mise en forme sont des facteurs reconnus pour impacter les propriétés électriques et mécaniques des fibres. Toutefois, compte tenu de la variabilité des sources de NTC et des conditions d’élaboration, il est difficile de dégager des relations entre caractéristiques des fibres et propriétés. C’est dans ce contexte que se situent ces travaux, avec comme objectifs la préparation de fibres à partir de NTC verticalement alignés selon deux voies d’élaboration et l’étude de leurs propriétés en fonction des caractéristiques des NTC. Une première partie de l’étude s’est focalisée sur la faisabilité de filage (voie sèche) à partir de tapis de NTC synthétisés par CCVD d’aérosol afin d’obtenir des fibres composée seulement de NTC. Même si l’ensemble des essais n’a pas abouti à un filage continu, ils ont permis de mettre en évidence un lien entre la faible tortuosité des NTC au sein du tapis et la capacité de ce dernier à former un réseau cotonneux qui semble être nécessaire à l’obtention d’une fibre. La seconde partie concerne l’étude de l’effet des caractéristiques des NTC (longueur, diamètre et structure) sur les propriétés électriques et mécaniques de fibres composites NTC/alcool polyvinylique (PVA) obtenues par voie humide à partir de suspensions de NTC. Or, la préparation de ces dernières engendre une rupture des NTC dont la longueur en suspension est limitée au micromètre. Un nouveau procédé de dispersion basé sur l’utilisation de cycles de gel/dégel a été développé, permettant d’aboutir à des longueurs de NTC en suspension de l’ordre de 4 à 6 µm. Ainsi, des suspensions concentrées en NTC de longueur, structure et diamètre différents ont été obtenues et ont permis d’élaborer avec succès des fibres composites. Les propriétés mécaniques des fibres brutes sont essentiellement modifiées par la longueur des NTC qui conduit à une amélioration du module de Young et de la contrainte à la rupture. Les propriétés électriques dépendent de la concentration en NTC dans la fibre et de la structure des NTC. Après traitement des fibres à 200 °C, l’augmentation de la longueur des NTC entraine une amélioration de la conductivité électrique. Par conséquent, l’utilisation de NTC longs dans des fibres composites s’avère bénéfique en termes d’augmentation des performances. / Carbon nanotube (CNT) based fibers, due to their interesting electrical and mechanical properties, exhibit a broad range of potential applications, such as functional textile or electrical wiring. To date, there are two families of fibers prepared according to different routes: pure CNT fibers and CNT composite fibers. The CNT characteristics and the elaboration process are known to impact their electrical and mechanical properties. However, the large diversity of manufactured CNT and spinning conditions used to elaborate these fibers are not favorable to establish clear relationship between fiber characteristics and their properties. In this context, the aim of the present work is to prepare fibers from vertically aligned CNT carpet according to two different elaboration process and to study their properties according to the CNT characteristics. A first part of this study was focused on the dry-spinning feasibility directly from CNT carpet synthesized by aerosol-assisted CCVD process in order to prepare fibers containing only of CNT. Even though all tests did not lead to a continuous spinning, a relation between the weak CNT tortuosity and the capacity of carpet to form fluffy network was established, which seems important for fiber continuous spinning. The second part is devoted to the study of the CNT characteristic effect (length, diameter and structure) on the electrical and mechanical properties of composite fibers obtained by wet spinning from CNT suspension. However, the preparation of these suspensions generates a CNT breakage by reducing their length to the micrometer range. A new dispersion process based on freezing/thawing cycles was developed and enables to keep CNT length in suspension of about 4 to 6 µm. Thus, concentrated suspensions with different CNT length, structure and diameter were obtained and successfully spun into fibers. The mechanical properties of raw fibers are essentially modified by CNT length which involves an improvement of the Young modulus and the tensile strength. The electrical properties depend on the CNT concentration in fiber and on the CNT structure. After a heat treatment of fiber at 200 °C, the increase of CNT length leads to an improvement of electrical conductivity. Consequently, the use of long CNT in composite fibers is beneficial to improve their performances.

Page generated in 0.1387 seconds