• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Arrangement, Electronic Structure and Transport Properties in Surfactant Gel- and Related Systems Studied by Soft X-ray and Dielectric Spectroscopy

Gråsjö, Johan January 2013 (has links)
This thesis concerns studies of aqueous soft matter systems, especially surfactant micelle systems. The aim has been to study the molecular arrangement and electronic structure of the constituents of, as well as transport properties in such a system. The molecular arrangement and electronic structure has been studied by means of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray spectroscopy (RIXS). The transport properties have been investigated by low-frequency dielectric spectroscopy (LFDS) and small angle X-ray scattering (SAXS) as well as a theoretical modelling. The latter was based on Fick’s laws of the release from binary surfactant system and was validated by experiments. The RIXS and XAS measurements show the electronic structure in bulk water and the influence of the chemical surrounding of the water molecule in bulk water and of the water molecules confined in a micelle lattice. The spectra are highly dependent on the molecular arrangement in such systems. For glycine and sodium polyacrylate RIXS and XAS spectra show features which are unique for carboxyl and carboxylate groups and such measurements can thus be used for fingerprinting. The LFDS and SAXS measurements show a strong correlation between structure in a surfactant/poly-ion system and apparent mobility of surfactants. This conclusion is in line with earlier observations. By the theoretical modelling a predictive model for the surfactant release from a binary surfactant micelle system has been obtained and the importance of different factors for surfactant release has been further clarified.
2

Numerical Analysis of Non-Fickian Diffusion with a General Source

Tiwari, Ganesh 01 May 2013 (has links)
The inadequacy of Fick’s law to incorporate causality can be overcome by replacing it with the Green–Naghdi type II (GNII) flux relation. Combining the GNII assumption and conservation of mass leads to [see document for equation] where r (x, t) is the density function, S(p) is a source term and c¥ is a positive constant which carries (SI) units of m/sec. A general source term given by [see document for equation] is proposed. Here, the constants y and ps are the rate coefficient and saturation density respectively. The travelling wave solutions and numerical analysis of four special cases of equation (2), namely: Pearl-Verhulst Growth law, Zel’dovich Law, Newmann Law and Stefan- Boltzmann Law are investigated. For both analysis, results are compared with the available literature and extended for other cases. The numerical analysis is carried out by imposing well-studied Initial Boundary Value Problem and implementing a built-in method in the software package Mathematica 9. For Pearl-Verhulst source type, the results are compared to those found in literature [1]. Confirming the validity of built-in method for Pearl-Verhulst law, the generic built-in method is extended to study the transient signal response for similar initial boundary value problems when the source terms are Zel’dovich law, Newmann law and Stefan-Boltzmann law.
3

The Nernst-Planck-Poisson Reactive Transport Model for Concrete Carbonation and Chloride Diffusion in Carbonated and Non-carbonated Concrete

Alsheet, Feras January 2020 (has links)
The intrusion of chlorides and carbon dioxide into a reinforced concrete (RC) structure can initiate corrosion of the reinforcing steel, which, due to its expansive nature, can damage the structure and adversely affects its serviceability and safety. Corrosion will initiate if at the steel surface the concrete free chloride concentration exceeds a defined limit, or its pH falls below a critical level. Hence, determination of the time to reaching these critical limits is key to the assessment of RC structures durability and service life. Due to the ionic nature of the chlorides and the bicarbonate anion (HCO3-) formed by the CO2 in the multi-ionic pore solution, the transport of both species is driven by Fickian diffusion combined with electromigration and ionic activity, which can be mathematically expressed by the Nernst-Planck-Poisson (NPP) equations. For a complete representation of the phenomenon, however, the NPP equations must be supplemented by the relevant chemical equilibrium equations to ensure chemical balance among the various species within the concrete pore solution. The combination of NPP with the chemical equilibrium equations is often termed the NPP reactive transport model. In this study, such a model is developed, coded into the MATLAB platform, validated by available experimental data, and applied to analyze the time-dependent concrete carbonation and the movement of chlorides in carbonated and non-carbonated concrete. The results of these analyses can be used to predict the time to corrosion initiation. The transient one-dimensional governing equations of NPP are numerically solved using the Galerkin’s finite element formulation in space and the backward (implicit) Euler scheme in the time domain. The associated system of chemical equilibrium equations accounts for the key homogeneous and heterogeneous chemical reactions that take place in the concrete during carbonation and chlorides transport. At each stage of the analysis, the effects of these reactions on the changes in the pore solution chemical composition, pH, cement chloride binding capacity, concrete porosity, and the hydrated cement solids volumetric ratio are determined. The study demonstrates that given accurate input data, the presently developed NPP reactive transport model can accurately simulate the complex transport processes of chlorides and CO2 in concrete as a reactive porous medium, and the ensuing physical and chemical changes that occur due to the reaction of these species with the pore solution and the other cement hydration products. This conclusion is supported by the good agreement between results of the current analyses with the corresponding available experimental data from physical tests involving carbonation, and chloride diffusion in non-carbonated and carbonated concrete. / Thesis / Doctor of Philosophy (PhD)
4

Interdiffusion Study in Group IVB, VB and VIB Refractory Metal-Silicon Systems

Roy, Soumitra January 2013 (has links) (PDF)
The knowledge of diffusion parameters provides important understanding of many physical and mechanical properties of materials. In most of the applications silicides are grown by a diffusion controlled process mainly in thin film condition. Because of this reason, most of the studies till date are available in thin film condition. Although more than one phase is present in all these systems, mainly disilicides were found at the interface. In this thesis bulk interdiffusion studies are conducted by coupling pure refractory metals (group IVB, VB and VIB elements) with single crystal Si. Several phase layers grow between binary refractory metal and Si systems. The layer thicknesses of the phases are measured from the microstructures. Composition profiles were measured in electron probe microanalyzer. Different diffusion parameters are estimated such as parabolic growth constants, integrated diffusion coefficients, activation energy for diffusion and ratio of tracer diffusivities of the components are estimated. Growth mechanisms of the phases are discussed with the help of diffusion parameters. The atomic mechanism of the diffusion is discussed considering crystal structure of the phases along with possible defects present. Solid diffusion couple experiments are conducted to analyse the growth mechanism of the phases and the diffusion mechanism of the components in the Ti-Si system. The calculation of the parabolic growth constant and of the integrated diffusion coefficients substantiates that the analysis is intrinsically prone to erroneous conclusions if it is based just on the parabolic growth constants determined for a multiphase interdiffusion zone. The location of the marker plane is detected based on the uniform grain morphology in the TiSi2 phase, which indicates that this phase grows mainly because of Si diffusion. The growth mechanism of the phases and morphological evolution in the interdiffusion zone are explained with the help of imaginary diffusion couples. The activation enthalpies for the integrated diffusion coefficient of TiSi2 and the Si tracer diffusion are calculated as 190±9 and 170±12 kJ/mol, respectively. The crystal structure, details on the nearest neighbours of the elements and the relative mobilities of the components indicate that the vacancies are mainly present on the Si sublattice. Diffusion controlled growth of the phases in the Hf-Si and Zr-Si are studied by bulk diffusion couple technique. Only two phases grow in the interdiffusion zone, although several phases are present in both the systems. The location of the Kirkendall marker plane detected based on the grain morphology indicates that the disilicides grow by the diffusion of Si. Diffusion of the metal species in these phases is negligible. This indicates that vacancies are present mainly on the Si sublattice. The activation energies for integrated diffusion coefficients in the HfSi2 and ZrSi2 are estimated as 394 ± 37 and 346 ± 34 kJ/mol, respectively. The same is calculated for the HfSi phase as 485±42 kJ/mol. The activation energies for Si tracer diffusion in the HfSi2 and ZrSi2 phases are estimated as 430 ± 36 and 348 ± 34 kJ/mol, respectively. We conducted interdiffusion studies to understand the atomic mechanism of the diffusing species and the growth mechanism of the phases. Integrated diffusion coefficients and the ratio of tracer diffusion coefficients were estimated for these analyses. The activation energies for the integrated diffusion coefficients were calculated as 550 ± 70 and 410 ± 39 kJ/mol in the TaSi2 and the Ta5Si3 phases, respectively. In the TaSi2 phase, Ta has a slightly lower but comparable diffusion rate with respect to Si, although no TaTa bonds are present in the crystal. In the Ta5Si3 phase, Si has higher diffusion rate, which is rather unusual, if we consider the atoms in the nearest-neighbor positions for both the elements. The ratio of Si to Ta tracer diffusion coefficients is found to be lower in the Si-rich phase, TaSi2, compared to the Si-lean phase, Ta5Si3, which is also unusual. This indicates the type of structural defects present. An analysis on the growth mechanism of the phases indicates that duplex morphology and the Kirkendall marker plane should only be present in the TaSi2 phase. This is not present in the Ta5Si3 phase because of the very high growth rate of the TaSi2 phase, which consumes most of the Ta5Si3 phase layer. The problems in the calculation method used previously by others in this system are also explained. Experiments are conducted in the W-Si system to understand the diffusion mechanism of the species. The activation energies for integrated diffusion are found to be 152±7 and 301±40 kJ/mol in the WSi2 and W5Si3 phases, respectively. In both the phases, Si has a much higher diffusion rate compared to W. The result found in the WSi2 phase is not surprising, if we consider the nearest neighbors in the crystal. However, it is rather unusual to find that Si has higher diffusion rate in the W5Si3 phase, indicating the presence of high concentration of Si antisites in this phase. In the group IVB, VB and VIB M-Si systems are considered to show an interesting pattern in diffusion of components with the change in atomic number in a particular group. MSi2 and M5Si3 are considered for this discussion. Except in the Ta-Si system, activation energy for integrated diffusion of MSi2 is always lower than M5Si3. Interestingly, in both the phases, the relative mobilities measured by the ratio of tracer D* diffusion coefficients, S i decreases with the increase in atomic number in both the DM* groups. Both the phases have similar crystal structures in a particular group in which these parameters are calculated. In both the phases Si has higher diffusion rate compared to M. Absence of any M-M bonds in MSi2 and increase in the diffusivities of M with the increase in atomic number substantiates the increasing concentration of M anti-sites and higher interactions of M with vacancies. Only one or two Si-Si bonds are present in M5Si3, however, the higher diffusion rate of Si indicates the presence of vacancies mainly D* on its sublattice. On the other hand, increase in S i with increasing atomic number in DM* Both the groups substantiates increasing interactions of M and vacancies.
5

Caractérisation cinétique et structurale de verres sodo-silicatés soumis à un échange ionique au potassium / Structural characterization and kinetics of potassium ionic exchange on silica soda glass

Leboeuf, Valérie 16 November 2015 (has links)
Le nouvel essor industriel du marché des applications mobiles telles que les smartphones ou les tablettes tactiles nécessite de nombreuses recherches afin de concevoir des écrans en verres encore plus résistant. Le procédé d’échange ionique au potassium permet d’améliorer la résistance mécanique des verres grâce à la substitution des ions Na⁺ par des ions K⁺, de plus gros rayon ionique. Elle permet ainsi de bloquer les fissures superficielles du verre et de réduire la casse du matériau. Ce travail est consacré à comprendre le principe de diffusion des ions K⁺ au sein de la structure silicatée de différents verres. Les paramètres, temps, température et composition verrière, influent sur la cinétique de l’échange ionique. Dans les mêmes conditions de trempe, la réduction de la composition à un formateur et à l’ion mobile permet d’améliorer la diffusion et la propagation des ions au sein du matériau. Les conditions de trempe, thermique et temporelle, agissent sur la cinétique de diffusion des ions. Elles réduisent la facilité de déplacement des ions à travers la structure silicaté du matériau avec un changement de comportement au-delà de 8h d’immersion dans les sels fondus. La substitution des Na⁺ par les ions K⁺ et leur différence de taille modifient l’environnement des sites laissés vacants par les ions Na⁺ et modifie la structure silicatée du verre. La spectroscopie IR permet de mettre en évidence les modifications structurales des verres soumis à ce procédé d’échange ionique. Lors de l’introduction des ions K⁺, la structure du verre se dépolymérise et crée des oxygènes non pontants. Ceci permet de montrer que l’échange ionique conduit à l’amélioration du renforcement mécanique des verres. / The new industrial boom of the market for mobile applications such as smartphones or tablets requires much research in order to touch-screens design more resistant. The potassium ion exchange process improves the mechanical strength of glass by Na⁺ ions substitution with K⁺ ions, of larger ionic radius. It thus helps to block surface cracks in glass and reduce breakage of the material. This work is devoted to understand the principle of K⁺ diffusion in the silicate structure of different glasses. The parameters: time, temperature and glass composition affect the kinetic of ion exchange process. In the same quenching conditions, the limitation of the composition just to a former network and a mobile ion can improve the diffusion and the penetration ions inside the material. The quenching conditions, temperature and time, act on the kinetic diffusion. They reduce the mobility of the ions through the structure of the silicate material with a change of behaviour above 8h immersion in molten salts. Substitution of Na⁺ by K⁺ ions having different size affect the environment of the sites left vacant by the Na⁺ ions and modifies the silicate structure of the glass. IR spectroscopy allows highlighting the structural modifications of the glass submitted to this ion exchange process. During the introduction of the K⁺ ions inside the glass, the silicate structure is depolymerized and creates no-bridging oxygens. This allows to demonstrate that the ion exchange lead to the mechanical improvement of the glass.

Page generated in 0.0488 seconds