Spelling suggestions: "subject:"bfilter < stochastik> "" "subject:"bfilter < stochastika> ""
1 |
Hat Bayes eine Chance?Sontag, Ralph 10 May 2004 (has links) (PDF)
Workshop "Netz- und Service-Infrastrukturen"
Hat Bayes eine Chance?
Seit einigen Monaten oder Jahren werden verstärkt Bayes-Filter eingesetzt, um die Nutz-E-Mail ("`Ham"') vom unerwünschten "`Spam"' zu trennen. Diese stoßen jedoch leicht an ihre Grenzen.
In einem zweiten Abschnitt wird ein Filtertest der Zeitschrift c't genauer analysiert.
|
2 |
An improved collaborative filtering approach for predicting cross-category purchases based on binary market basket dataMild, Andreas, Reutterer, Thomas January 2002 (has links) (PDF)
Retail managers have been interested in learning about cross-category purchase behavior of their customers for a fairly long time. More recently, the task of inferring cross-category relationship patterns among retail assortments is gaining attraction due to its promotional potential within recommender systems used in online environments. Collaborative filtering algorithms are frequently used in such settings for the prediction of choices, preferences and/or ratings of online users. This paper investigates the suitability of such methods for situations when only binary pick-any customer information (i.e., choice/nonchoice of items, such as shopping basket data) is available. We present an extension of collaborative filtering algorithms for such data situations and apply it to a real-world retail transaction dataset. The new method is benchmarked against more conventional algorithms and can be shown to deliver superior results in terms of predictive accuracy. (author's abstract) / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
3 |
Hat Bayes eine Chance?Sontag, Ralph 10 May 2004 (has links)
Workshop "Netz- und Service-Infrastrukturen"
Hat Bayes eine Chance?
Seit einigen Monaten oder Jahren werden verstärkt Bayes-Filter eingesetzt, um die Nutz-E-Mail ("`Ham"') vom unerwünschten "`Spam"' zu trennen. Diese stoßen jedoch leicht an ihre Grenzen.
In einem zweiten Abschnitt wird ein Filtertest der Zeitschrift c't genauer analysiert.
|
4 |
Robuste Lokalisierung von autonomen Fahrzeugen mittels LandmarkenGrünwedel, Sebastian 22 September 2009 (has links) (PDF)
Die Fahrzeuglokalisierung ist im Bereich der Fahrerassistenzsysteme von entscheidender
Bedeutung und Voraussetzung fur verschiedene Anwendungen der Robotik, wie z.B.
Navigation oder Kollisionsvermeidung fur fahrerlose Transportsysteme (FTS).
In dieser Arbeit wird ein Verfahren zur Lokalisierung mittels Landmarken vorgestellt,
die eine Orientierung bezuglich einer Karte ermoglichen. Dabei werden der Erweiterte-
Kalman-Filter und der Partikel-Filter fur diese Aufgabe untersucht und verglichen. Ein
Schwerpunkt dieser Betrachtungen stellt dabei der Partikel-Filter dar. Die besondere
Problematik der Initialisierung wird ausfuhrlich fur beide Filter dargestellt.
Simulationen und Versuche zeigen, dass sich der Partikel-Filter fur eine robuste
Lokalisierung der Fahrzeugposition verwenden lasst. Im Vergleich dazu kann der
Erweiterte-Kalman-Filter nur im begrenzten Maße eingesetzt werden. / The localization of vehicles is of vital importance in the field of driver assistance
systems and a requirement of different applications for robotics, i.e. navigation or
collision avoidance for automatic guided vehicle systems.
In this thesis an approach for localization by means of landmarks is introduced,
which enables an orientation regarding a map. The extended Kalman filter and the
particle filter are analyzed and compared. The main focus for this consideration is on
the particle filter. The problematic for initialization is discussed in detail for both
filters.
Simulations and tests prove that the particle filter is suitable for robust localization
of the vehicle position. Compared to this, the extended Kalman filter can only be
used to a certain extend.
|
5 |
Robuste Lokalisierung von autonomen Fahrzeugen mittels LandmarkenGrünwedel, Sebastian 07 February 2008 (has links)
Die Fahrzeuglokalisierung ist im Bereich der Fahrerassistenzsysteme von entscheidender
Bedeutung und Voraussetzung fur verschiedene Anwendungen der Robotik, wie z.B.
Navigation oder Kollisionsvermeidung fur fahrerlose Transportsysteme (FTS).
In dieser Arbeit wird ein Verfahren zur Lokalisierung mittels Landmarken vorgestellt,
die eine Orientierung bezuglich einer Karte ermoglichen. Dabei werden der Erweiterte-
Kalman-Filter und der Partikel-Filter fur diese Aufgabe untersucht und verglichen. Ein
Schwerpunkt dieser Betrachtungen stellt dabei der Partikel-Filter dar. Die besondere
Problematik der Initialisierung wird ausfuhrlich fur beide Filter dargestellt.
Simulationen und Versuche zeigen, dass sich der Partikel-Filter fur eine robuste
Lokalisierung der Fahrzeugposition verwenden lasst. Im Vergleich dazu kann der
Erweiterte-Kalman-Filter nur im begrenzten Maße eingesetzt werden. / The localization of vehicles is of vital importance in the field of driver assistance
systems and a requirement of different applications for robotics, i.e. navigation or
collision avoidance for automatic guided vehicle systems.
In this thesis an approach for localization by means of landmarks is introduced,
which enables an orientation regarding a map. The extended Kalman filter and the
particle filter are analyzed and compared. The main focus for this consideration is on
the particle filter. The problematic for initialization is discussed in detail for both
filters.
Simulations and tests prove that the particle filter is suitable for robust localization
of the vehicle position. Compared to this, the extended Kalman filter can only be
used to a certain extend.
|
Page generated in 0.09 seconds