• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 12
  • 5
  • 1
  • Tagged with
  • 32
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Kernel Methods for Nonlinear Identification, Equalization and Separation of Signals

Vaerenbergh, Steven Van 03 February 2010 (has links)
En la última década, los métodos kernel (métodos núcleo) han demostrado ser técnicas muy eficaces en la resolución de problemas no lineales. Parte de su éxito puede atribuirse a su sólida base matemática dentro de los espacios de Hilbert generados por funciones kernel ("reproducing kernel Hilbert spaces", RKHS); y al hecho de que resultan en problemas convexos de optimización. Además, son aproximadores universales y la complejidad computacional que requieren es moderada. Gracias a estas características, los métodos kernel constituyen una alternativa atractiva a las técnicas tradicionales no lineales, como las series de Volterra, los polinómios y las redes neuronales. Los métodos kernel también presentan ciertos inconvenientes que deben ser abordados adecuadamente en las distintas aplicaciones, por ejemplo, las dificultades asociadas al manejo de grandes conjuntos de datos y los problemas de sobreajuste ocasionados al trabajar en espacios de dimensionalidad infinita.En este trabajo se desarrolla un conjunto de algoritmos basados en métodos kernel para resolver una serie de problemas no lineales, dentro del ámbito del procesado de señal y las comunicaciones. En particular, se tratan problemas de identificación e igualación de sistemas no lineales, y problemas de separación ciega de fuentes no lineal ("blind source separation", BSS). Esta tesis se divide en tres partes. La primera parte consiste en un estudio de la literatura sobre los métodos kernel. En la segunda parte, se proponen una serie de técnicas nuevas basadas en regresión con kernels para resolver problemas de identificación e igualación de sistemas de Wiener y de Hammerstein, en casos supervisados y ciegos. Como contribución adicional se estudia el campo del filtrado adaptativo mediante kernels y se proponen dos algoritmos recursivos de mínimos cuadrados mediante kernels ("kernel recursive least-squares", KRLS). En la tercera parte se tratan problemas de decodificación ciega en que las fuentes son dispersas, como es el caso en comunicaciones digitales. La dispersidad de las fuentes se refleja en que las muestras observadas se agrupan, lo cual ha permitido diseñar técnicas de decodificación basadas en agrupamiento espectral. Las técnicas propuestas se han aplicado al problema de la decodificación ciega de canales MIMO rápidamente variantes en el tiempo, y a la separación ciega de fuentes post no lineal. / In the last decade, kernel methods have become established techniques to perform nonlinear signal processing. Thanks to their foundation in the solid mathematical framework of reproducing kernel Hilbert spaces (RKHS), kernel methods yield convex optimization problems. In addition, they are universal nonlinear approximators and require only moderate computational complexity. These properties make them an attractive alternative to traditional nonlinear techniques such as Volterra series, polynomial filters and neural networks.This work aims to study the application of kernel methods to resolve nonlinear problems in signal processing and communications. Specifically, the problems treated in this thesis consist of the identification and equalization of nonlinear systems, both in supervised and blind scenarios, kernel adaptive filtering and nonlinear blind source separation.In a first contribution, a framework for identification and equalization of nonlinear Wiener and Hammerstein systems is designed, based on kernel canonical correlation analysis (KCCA). As a result of this study, various other related techniques are proposed, including two kernel recursive least squares (KRLS) algorithms with fixed memory size, and a KCCA-based blind equalization technique for Wiener systems that uses oversampling. The second part of this thesis treats two nonlinear blind decoding problems of sparse data, posed under conditions that do not permit the application of traditional clustering techniques. For these problems, which include the blind decoding of fast time-varying MIMO channels, a set of algorithms based on spectral clustering is designed. The effectiveness of the proposed techniques is demonstrated through various simulations.
32

Interconnection Architecture of Proximity Smart IoE-Networks with Centralised Management

González Ramírez, Pedro Luis 07 April 2022 (has links)
[ES] La interoperabilidad entre los objetos comunicados es el objetivo principal del internet de las cosas (IoT). Algunos esfuerzos para lograrlo han generado diversas propuestas de arquitecturas, sin embargo, aún no se ha llegado a un conceso. Estas arquitecturas difieren en el tipo de estructura, grado de centralización, algoritmo de enrutamiento, métricas de enrutamiento, técnicas de descubrimiento, algoritmos de búsqueda, segmentación, calidad de servicio y seguridad, entre otros. Algunas son mejores que otras, dependiendo del entorno en el que se desempeñan y del tipo de parámetro que se use. Las más populares son las orientadas a eventos o acciones basadas en reglas, las cuales han permitido que IoT ingrese en el mercado y logre una rápida masificación. Sin embargo, su interoperabilidad se basa en alianzas entre fabricantes para lograr su compatibilidad. Esta solución se logra en la nube con una plataforma que unifica a las diferentes marcas aliadas. Esto permite la introducción de estas tecnologías a la vida común de los usuarios pero no resuelve problemas de autonomía ni de interoperabilidad. Además, no incluye a la nueva generación de redes inteligentes basadas en cosas inteligentes. La arquitectura propuesta en esta tesis toma los aspectos más relevantes de las cuatro arquitecturas IoT más aceptadas y las integra en una, separando la capa IoT (comúnmente presente en estas arquitecturas), en tres capas. Además, está pensada para abarcar redes de proximidad (integrando diferentes tecnologías de interconexión IoT) y basar su funcionamiento en inteligencia artificial (AI). Por lo tanto, esta propuesta aumenta la posibilidad de lograr la interoperabilidad esperada y aumenta la funcionalidad de cada objeto en la red enfocada en prestar un servicio al usuario. Aunque el sistema que se propone incluye el procesamiento de una inteligencia artificial, sigue los mismos aspectos técnicos que sus antecesoras, ya que su operación y comunicación continúan basándose en la capa de aplicación y trasporte de la pila de protocolo TCP/IP. Sin embargo, con el fin de aprovechar los protocolos IoT sin modificar su funcionamiento, se crea un protocolo adicional que se encapsula y adapta a su carga útil. Se trata de un protocolo que se encarga de descubrir las características de un objeto (DFSP) divididas en funciones, servicios, capacidades y recursos, y las extrae para centralizarla en el administrador de la red (IoT-Gateway). Con esta información el IoT-Gateway puede tomar decisiones como crear grupos de trabajo autónomos que presten un servicio al usuario y enrutar a los objetos de este grupo que prestan el servicio, además de medir la calidad de la experiencia (QoE) del servicio; también administra el acceso a internet e integra a otras redes IoT, utilizando inteligencia artificial en la nube. Al basarse esta propuesta en un nuevo sistema jerárquico para interconectar objetos de diferente tipo controlados por AI con una gestión centralizada, se reduce la tolerancia a fallos y seguridad, y se mejora el procesamiento de los datos. Los datos son preprocesados en tres niveles dependiendo del tipo de servicio y enviados a través de una interfaz. Sin embargo, si se trata de datos sobre sus características estos no requieren mucho procesamiento, por lo que cada objeto los preprocesa de forma independiente, los estructura y los envía a la administración central. La red IoT basada en esta arquitectura tiene la capacidad de clasificar un objeto nuevo que llegue a la red en un grupo de trabajo sin la intervención del usuario. Además de tener la capacidad de prestar un servicio que requiera un alto procesamiento (por ejemplo, multimedia), y un seguimiento del usuario en otras redes IoT a través de la nube. / [CA] La interoperabilitat entre els objectes comunicats és l'objectiu principal de la internet de les coses (IoT). Alguns esforços per aconseguir-ho han generat diverses propostes d'arquitectures, però, encara no s'arriba a un concens. Aquestes arquitectures difereixen en el tipus d'estructura, grau de centralització, algoritme d'encaminament, mètriques d'enrutament, tècniques de descobriment, algoritmes de cerca, segmentació, qualitat de servei i seguretat entre d'altres. Algunes són millors que altres depenent de l'entorn en què es desenvolupen i de el tipus de paràmetre que es faci servir. Les més populars són les orientades a esdeveniments o accions basades en regles. Les quals li han permès entrar al mercat i aconseguir una ràpida massificació. No obstant això, la seva interoperabilitat es basa en aliances entre fabricants per aconseguir la seva compatibilitat. Aquesta solució s'aconsegueix en el núvol amb una plataforma que unifica les diferents marques aliades. Això permet la introducció d'aquestes tecnologies a la vida comuna dels usuaris però no resol problemes d'autonomia ni d'interoperabilitat. A més, no inclou a la nova generació de xarxes intel·ligents basades en coses intel·ligents. L'arquitectura proposada en aquesta tesi, pren els aspectes més rellevants de les quatre arquitectures IoT mes acceptades i les integra en una, separant la capa IoT (comunament present en aquestes arquitectures), en tres capes. A més aquesta pensada en abastar xarxes de proximitat (integrant diferents tecnologies d'interconnexió IoT) i basar el seu funcionament en intel·ligència artificial. Per tant, aquesta proposta augmenta la possibilitat d'aconseguir la interoperabilitat esperada i augmenta la funcionalitat de cada objecte a la xarxa enfocada a prestar un servei a l'usuari. Tot i que el sistema que es proposa inclou el processament d'una intel·ligència artificial, segueix els mateixos aspectes tècnics que les seves antecessores, ja que, la seva operació i comunicació se segueix basant en la capa d'aplicació i transport de la pila de protocol TCP / IP. No obstant això, per tal d'aprofitar els protocols IoT sense modificar el seu funcionament es crea un protocol addicional que s'encapsula i s'adapta a la seva càrrega útil. Es tracta d'un protocol que s'encarrega de descobrir les característiques d'un objecte (DFSP) dividides en funcions, serveis, capacitats i recursos, i les extreu per centralitzar-la en l'administrador de la xarxa (IoT-Gateway). Amb aquesta informació l'IoT-Gateway pot prendre decisions com crear grups de treball autònoms que prestin un servei a l'usuari i encaminar als objectes d'aquest grup que presten el servei. A més de mesurar la qualitat de l'experiència (QoE) de el servei. També administra l'accés a internet i integra a altres xarxes Iot, utilitzant intel·ligència artificial en el núvol. A l'basar-se aquesta proposta en un nou sistema jeràrquic per interconnectar objectes de diferent tipus controlats per AI amb una gestió centralitzada, es redueix la tolerància a fallades i seguretat, i es millora el processament de les dades. Les dades són processats en tres nivells depenent de el tipus de servei i enviats a través d'una interfície. No obstant això, si es tracta de dades sobre les seves característiques aquests no requereixen molt processament, de manera que cada objecte els processa de forma independent, els estructura i els envia a l'administració central. La xarxa IoT basada en aquesta arquitectura té la capacitat de classificar un objecte nou que arribi a la xarxa en un grup de treball sense la intervenció de l'usuari. A més de tenir la capacitat de prestar un servei que requereixi un alt processament (per exemple multimèdia), i un seguiment de l'usuari en altres xarxes IoT a través del núvol. / [EN] Interoperability between communicating objects is the main goal of the Internet of Things (IoT). Efforts to achieve this have generated several architectures' proposals; however, no consensus has yet been reached. These architectures differ in structure, degree of centralisation, routing algorithm, routing metrics, discovery techniques, search algorithms, segmentation, quality of service, and security. Some are better than others depending on the environment in which they perform, and the type of parameter used. The most popular are those oriented to events or actions based on rules, which has allowed them to enter the market and achieve rapid massification. However, their interoperability is based on alliances between manufacturers to achieve compatibility. This solution is achieved in the cloud with a dashboard that unifies the different allied brands, allowing the introduction of these technologies into users' everyday lives but does not solve problems of autonomy or interoperability. Moreover, it does not include the new generation of smart grids based on smart things. The architecture proposed in this thesis takes the most relevant aspects of the four most accepted IoT-Architectures and integrates them into one, separating the IoT layer (commonly present in these architectures) into three layers. It is also intended to cover proximity networks (integrating different IoT interconnection technologies) and base its operation on artificial intelligence (AI). Therefore, this proposal increases the possibility of achieving the expected interoperability and increases the functionality of each object in the network focused on providing a service to the user. Although the proposed system includes artificial intelligence processing, it follows the same technical aspects as its predecessors since its operation and communication is still based on the application and transport layer of the TCP/IP protocol stack. However, in order to take advantage of IoT-Protocols without modifying their operation, an additional protocol is created that encapsulates and adapts to its payload. This protocol discovers the features of an object (DFSP) divided into functions, services, capabilities, and resources, and extracts them to be centralised in the network manager (IoT-Gateway). With this information, the IoT-Gateway can make decisions such as creating autonomous workgroups that provide a service to the user and routing the objects in this group that provide the service. It also measures the quality of experience (QoE) of the service. Moreover, manages internet access and integrates with other IoT-Networks, using artificial intelligence in the cloud. This proposal is based on a new hierarchical system for interconnecting objects of different types controlled by AI with centralised management, reducing the fault tolerance and security, and improving data processing. Data is preprocessed on three levels depending on the type of service and sent through an interface. However, if it is data about its features, it does not require much processing, so each object preprocesses it independently, structures it and sends it to the central administration. The IoT-Network based on this architecture can classify a new object arriving on the network in a workgroup without user intervention. It also can provide a service that requires high processing (e.g., multimedia), and user tracking in other IoT-Networks through the cloud. / González Ramírez, PL. (2022). Interconnection Architecture of Proximity Smart IoE-Networks with Centralised Management [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181892

Page generated in 0.0404 seconds