Spelling suggestions: "subject:"filtrations dewood"" "subject:"filtrations dhood""
1 |
Fonction de Hilbert non standard et nombres de Betti gradués des puissances d'idéaux / Non-standard Hilbert function and graded Betti numbers of powers of idealsLamei, Kamran 18 December 2014 (has links)
En utilisant le concept des fonctions de partition , nous étudions le comportement asymptotique des nombres de Betti gradués des puissances d’idéaux homogènes dans un polynôme sur un corp.Pour un Z-graduer positif, notre résultat principal affirme que les nombres de Betti des puissances est codé par un nombre fini des polynômes. Plus précisément, Z^2 peut être divisé en un nombre fini des régions telles que, dans chacun d’eux, dimk Tor^{S}_{i} (I^t,k)μ est un quasi-polynôme en (μ,t). Ce affine, dans une situation graduée, le résultat de Kodiyalam sur nombres de Betti des puissances dans [33].La déclaration principale traite le cas des produits des puissances d’idéaux homogènes dans un algèbre Z^d -graduée , pour un graduer positif, dans le sens de [37] et il est généralise également pour les filtrations I -good.Dans la deuxième partie, en utilisant la version paramétrique de l’algorithme de Barvinok, nous donnons une formule fermée pour les fonctions de Hilbert non-standard d’anneaux de polynômes, en petites dimensions. / Using the concept of vector partition functions, we investigate the asymptotic behavior of graded Betti numbers of powers of homogeneous ideals in a polynomial ring over a field. For a positive Z-grading, our main result states that the Betti numbers of powers is encoded by finitely many polynomials. More precisely, Z^2 can be splitted into a finite number of regions such that, in each of them, dim_k Tor^{S}_{i} (I^t,k)μ is a quasi-polynomial in (μ,t). This refines, in a graded situation, the result of Kodiyalam on Betti numbers of powers in [33]. The main statement treats the case of a power products of homogeneous ideals in a Z^d -graded algebra, for a positive grading, in the sense of [37] and it is also generalizes to I -good filtrations . In the second part , using the parametric version of Barvinok’s algorithm, we give a closed formula for non-standard Hilbert functions of polynomial rings, in low dimensions.
|
Page generated in 0.1051 seconds