Spelling suggestions: "subject:"crinite difference timedomain analysis"" "subject:"crinite difference bidomain analysis""
1 |
A Hybrid Computational Electromagnetics Formulation for Simulation of Antennas Coupled to Lossy and Dielectric VolumesAbd-Alhameed, Raed, Excell, Peter S., Mangoud, Mohab A. January 2004 (has links)
No / A heterogeneous hybrid computational electromagnetics method is presented, which enables different parts of an antenna simulation problem to be treated by different methods, thus enabling the most appropriate method to be used for each part. The method uses a standard frequency-domain moment-method program and a finite-difference time-domain program to compute the fields in two regions. The two regions are interfaced by surfaces on which effective sources are defined by application of the Equivalence Principle. An extension to this permits conduction currents to cross the boundary between the different computational domains. Several validation cases are examined and the results compared with available data. The method is particularly suitable for simulation of the behavior of an antenna that is partially buried, or closely coupled with lossy dielectric volumes such as soil, building structures or the human body.
|
2 |
Computation of Specific Absorption Rate in the Human Body due to Base-Station Antennas using a Hybrid FormulationAbd-Alhameed, Raed, Excell, Peter S., Mangoud, Mohab A. January 2005 (has links)
A procedure for computational dosimetry to verify safety standards compliance of mobile communications base stations is presented. Compared with the traditional power density method, a procedure based on more rigorous physics was devised, requiring computation or measurement of the specific absorption rate (SAR) within the biological tissue of a person at an arbitrary distance. This uses a hybrid methd of moments/finite difference time domain (MoM/FDTD) numerical method in order to determine the field or SAR distribution in complex penetrable media, without the computational penalties that would result from a wholly FDTD simulation. It is shown that the transmitted power allowed by the more precise SAR method is, in many cases, between two and five times greater than that allowed by standards implementing the power flux density method.
|
Page generated in 0.1089 seconds