Spelling suggestions: "subject:"crinite element method."" "subject:"cofinite element method.""
1001 |
Modelling Framework for Radio Frequency Spatial MeasurementWiles, Andrew Donald January 2006 (has links)
The main crux of this thesis was to produce a model that was capable of simulating the theoretical performance of different configurations for a spatial measurement system using radio frequency technology. It has been important to study new modalities of spatial measurement since spatial measurement systems are an enabling technology that have allowed for the creation of better medical procedures and techniques, provided valuable data for motion capture in animation and biomechanics, and have improved the quality of manufacturing processes in many industries. However, there has been room for improvement in the functional design and accuracy of spatial measurement systems that will enhance current applications and further develop new applications in medicine, research and industry. <br /><br /> In this thesis, a modelling framework for the investigation of spatial measurement based on radio frequency signals was developed. The simulation framework was designed for the purpose of investigating different position determination algorithms and sensor geomatries. A finite element model using the FEMLAB partial differential equation modelling tool was created for a time-domain model of electromagnetic wave propagation in order to simulate the radio frequency signals travelling from a transmitting source antenna to a set of receiving antenna sensors. Electronic line signals were obtained using a simple receiving infinitesimal dipole model and input into a time difference of arrival localization algorithm. The finite element model results were validated against a set of analytical solutions for the free space case. The accuracy of the localization algorithm was measured against a set of possible applications for a potential radio frequency spatial measurement system design. <br /><br /> It was concluded that the simulation framework was successful should one significant deficiency be corrected in future research endeavours. A phase error was observed in the signals extracted at the receiving antenna locations. This phase error, which can be up to 40??, was attributed to the zeroth order finite elements implemented in the finite element model. This phase error can be corrected in the future if higher order vector elements are introduced into future versions of FEMLAB or via the development of custom finite element analysis software but were not implemented in this thesis due to time constraints. Other improvements were also suggested for future work.
|
1002 |
Finite element simulation of the micromagnetic behaviour of nanoelementsRidley, Philip Harold William January 2000 (has links)
No description available.
|
1003 |
Modeliranje procesa obrade rezanjem / Modeling of cutting processesMitrović Anđelija 09 December 2016 (has links)
<p>U radu je izvršeno modeliranje i simulacija procesa obrade glodanjem sa predviđanjem temperature u zoni rezanja pomoću metode konačnih elemenata. Kao ulazni parametri obrade za model uzeti su brzina rezanja, korak i dubina rezanja a kao izlazna performansa temperatura u zoni rezanja. Kreirani model za simulaciju obrade glodanjem proveren je eksperimentalnim testiranjem sa istim parametrima obrade. Izvršena je analiza eksperimentalnih rezultata sa predloženim modelom. Rezultati ovog istraživanja su pokazali da se modeliranjem i simulacijom procesa obrade glodanjem može adekvatno predvideti temperatura u zoni rezanja.</p> / <p>The work explains process of modeling and simulation of milling predictive<br />temperature in the cutting zone by using the finite element method.The input<br />parameters for the processing model are cutting speed, feed and depth of a<br />cut. The temperature in the cutting zone was used as an output performance.<br />Designed model that simulates milling is checked by experimental testing<br />with the same machining parameters. The analysis of the experimental<br />results with the proposed model was carried out. Results of this study show<br />that the modeling and simulation of milling process can adequately predict<br />the temperature in the cutting zone.</p>
|
1004 |
Impact of Tissue Characteristics on Radio-Frequency Lesioning and Navigation in the Brain : Simulation, experimental and clinical studiesJohansson, Johannes January 2009 (has links)
Radio-Frequency (RF) lesioning, or RF ablation, is a method that uses high frequency currents for thermal coagulation of pathological tissue or signal pathways. The current is delivered from an electrode, which also contains a temperature sensor permitting control of the current at a desired target temperature. In the brain, RF lesioning can e.g. be used for treatment of severe chronic pain and movement disorders such as Parkinson’s disease. This thesis focuses on modelling and simulation with the aim of gaining better understanding and predictability of the lesioning process in the central brain. The finite element method (FEM), together with experimental comparisons, was used to study the effects of electric and thermal conductivity, blood perfusion (Paper I), and cerebrospinal fluid (CSF) filled cysts (Paper II) on resulting lesion volume and shape in brain tissue. The influence of blood perfusion was modelled as an increase in thermal conductivity in non-coagulated tissue. This model gave smaller simulated lesions with increasing blood perfusion as heat was more efficiently conducted from the rim of the lesion. If the coagulation was not taken into consideration, the lesion became larger with increasing thermal conductivity instead, as the increase in conducted heat was compensated for through an increased power output in order to maintain the target temperature. Simulated lesions corresponded well to experimental in-vivo lesions. The electric conductivity in a homogeneous surrounding had little impact but this was not true for a heterogeneous surrounding. CSF has a much higher electric conductivity than brain tissue, which focused the current to the cyst if the electrode tip was in contact with both a cyst and brain tissue. Heating of CSF could also cause considerable convective flow and as a result a very efficient heat transfer. This affected both simulated and experimental lesion sizes and shapes. As a result both very large and very small lesions could be obtained depending on whether sufficient power was supplied or if the heating was mitigated over a large volume. Clinical (Paper IV) and experimental (Paper III) measurements were used for investigation of changes in reflected light intensity from undamaged and coagulating brain tissue respectively. Monte Carlo (MC) simulations for light transport were made for comparison (Paper V). For the optical measurements, an RF electrode with adjacent optical fibres was used and this electrode was also modelled for the optical simulations. According to the MC simulations, coagulation should make grey matter lighter and white matter darker, while thalamic light grey should remain approximately the same. Experiments in ex-vivo porcine tissue gave an increase in reflected light intensity from grey matter at approximately 50 °C but the signal was very variable and the isotherm 60 °C gave better agreement between simulated and experimental lesions. No consistent decrease in reflected light intensity could be seen during coagulation of white matter. Clinical measurements were performed during the creation of 21 trajectories for deep brain stimulation electrodes. In agreement with the simulations, reflected light intensity was found to differentiate well between undamaged grey, light grey and white matter. In conclusion, blood perfusion and CSF in particular may greatly affect the lesioning process and can be important to consider when planning surgery. Reflected light intensity seems unreliable for the detection of coagulation in light grey brain matter such as the thalamus. However, it seems very promising for navigation in the brain and for detection of coagulation in other tissue types such as muscle.
|
1005 |
Mathematical modeling of rail gunPratikakis, Nikolaos 09 1900 (has links)
The exit velocity of the launch object along with the values of electric and thermal conductivity at the interfaces between the rails and the armature of a rail gun are critical issues. This thesis, using finite element method, estimates the former by solving the proper multiphysics governing equations, along with exploiting the contact theory between flat surfaces. A parametric analysis in the vicinity of the standard deviation of the normalized distance between the references planes of the rough surfaces was made for a variety of materials and textures at the interfaces. Furthermore, the amount of ohmic heat that is generated due to the application of the electric potential and the resistance of materials is estimated along with the average temperature at the interfaces. Finally, thermal stresses were also studied.
|
1006 |
Proširena teorija prostornih vektora za određivanje parametara ekvivalentne šeme asinhronih motora / Power electronic and electrical machinesKiralj Ištvan 30 September 2016 (has links)
<p>Definisan je metod za određivanje prostornih vektora struje rotora asinhronih mašina sa kaveznim namotajem, kao i metod za proračun fazora fluksnih obuhvata i struja rotora i statora.<br />Uvedena je strujni fluksni obuhvat, koji pojednostavljulje postupak određivanja fazora fluksnih obuhvata.<br />Definisan je metod za proračun induktivnosti i otpornosti T ekvivalentne šeme asinhronih mašina.<br />Definisan je metod za proračun komponenata momenta, koje potiču od visokih prostornih harmonika struje, kao i pravilo za proračun rezultantnog momenta na osnovu harmoničkih komponenata momenta.</p> / <p>Method for determination of space vectors of currents in induction motors with squirrel cage, and a method for calculation phasors of flux linkages and currents of rotor and stator are determined.<br />Current-flux linkage is introduced, which simplifies determination of phasors of flux linkages.<br />Methods for calculation of inductances and resistances of T equivalent circuit for induction motors are defined.<br />A method for calculation of components of torque, which originate from high space harmonics of currents, and rules for calculation resultant torque on the basis of harmonic components of torque are determined.</p> / null
|
1007 |
Adaptive mesh modelling of the thermally driven annulusMaddison, James R. January 2011 (has links)
Numerical simulations of atmospheric and oceanic flows are fundamentally limited by a lack of model resolution. This thesis describes the application of unstructured mesh finite element methods to geophysical fluid dynamics simulations. These methods permit the mesh resolution to be concentrated in regions of relatively increased dynamical importance. Dynamic mesh adaptivity can further be used to maintain an optimised mesh even as the flow develops. Hence unstructured dynamic mesh adaptive methods have the potential to enable efficient simulations of high Reynolds number flows in complex geometries. In this thesis, the thermally driven rotating annulus is used to test these numerical methods. This system is a classic laboratory scale analogue for large scale geophysical flows. The thermally driven rotating annulus has a long history of experimental and numerical research, and hence it is ideally suited for the validation of new numerical methods. For geophysical systems there is a leading order balance between the Coriolis and buoyancy accelerations and the pressure gradient acceleration: geostrophic and hydrostatic balance. It is essential that any numerical model for these systems is able to represent these balances accurately. In this thesis a balanced pressure decomposition method is described, whereby the pressure is decomposed into a ``balanced'' component associated with the Coriolis and buoyancy accelerations, and a ``residual'' component associated with other forcings and that enforces incompressibility. It is demonstrated that this method can be used to enable a more accurate representation of geostrophic and hydrostatic balance in finite element modelling. Furthermore, when applying dynamic mesh adaptivity, there is a further potential for imbalance injection by the mesh optimisation procedure. This issue is tested in the context of shallow-water ocean modelling. For the linearised system on an $f$-plane, and with a steady balance permitting numerical discretisation, an interpolant is formulated that guarantees that a steady and balanced state remains steady and in balance after interpolation onto an arbitrary target mesh. The application of unstructured dynamic mesh adaptive methods to the thermally driven rotating annulus is presented. Fixed structured mesh finite element simulations are conducted, and compared against a finite difference model and against experiment. Further dynamic mesh adaptive simulations are then conducted, and compared against the structured mesh simulations. These tests are used to identify weaknesses in the application of dynamic mesh adaptivity to geophysical systems. The simulations are extended to a more challenging system: the thermally driven rotating annulus at high Taylor number and with sloping base and lid topography. Analysis of the high Taylor number simulations reveals a direct energy transfer from the eddies to the mean flow, confirming the results of previous experimental work.
|
1008 |
Full-space conformal mapping for the calculation of the parameters of overhead transmission lines and underground cablesSmith Rodriguez, Edison Manuel 13 September 2016 (has links)
This thesis presents a method to obtain the per-unit-length electrical parameters of a given overhead transmission line or underground cable in an unbounded space considering the effect of the ground. This is achieved using a two-dimensional conformal mapping technique, which consists of a modified bilinear transformation to map a semi-open half-space problem into a unit circle. The Helmholtz equations describing the quasi-stationary approximation for the electromagnetic field behaviour are solved using finite element method, with the aid of commonly used commercial software program, COMSOL Multiphysics. The per-unit-length resistance, inductance and capacitance are calculated using the proposed mapping method, the truncation of the original space method and then compared with the analytical solution obtained from Carson's approximation for the overhead lines and Wedepohl's formulation for the underground cables. / October 2016
|
1009 |
Finite element methods for surface problemsCenanovic, Mirza January 2017 (has links)
The purpose of this thesis is to further develop numerical methods for solving surface problems by utilizing tangential calculus and the trace finite element method. Direct computation on the surface is possible by the use of tangential calculus, in contrast to the classical approach of mapping 2D parametric surfaces to 3D surfaces by means of differential geometry operators. Using tangential calculus, the problem formulation is only dependent on the position and normal vectors of the 3D surface. Tangential calculus thus enables a clean, simple and inexpensive formulation and implementation of finite element methods for surface problems. Meshing techniques are greatly simplified from the end-user perspective by utilizing an unfitted finite element method called the Trace Finite Element Method, in which the basic idea is to embed the surface in a higher dimensional mesh and use the shape functions of this background mesh for the discretization of the partial differential equation. This method makes it possible to model surfaces implicitly and solve surface problems without the need for expensive meshing/re-meshing techniques especially for moving surfaces or surfaces embedded in 3D solids, so called embedded interface problems. Using these two approaches, numerical methods for solving three surface problems are proposed: 1) minimal surface problems, in which the form that minimizes the mean curvature was computed by iterative update of a level-set function discretized using TraceFEM and driven by advection, for which the velocity field was given by the mean curvature flow, 2) elastic membrane problems discretized using linear and higher order TraceFEM, which makes it straightforward to embed complex geometries of membrane models into an elastic bulk for reinforcement and 3) stabilized, accurate vertex normal and mean curvature estimation with local refinement on triangulated surfaces. In this thesis the basics of the two main approaches are presented, some aspects such as stabilization and surface reconstruction are further developed, evaluated and numerically analyzed, details on implementations are provided and the current state of work is presented.
|
1010 |
Modélisation et simulation multi-échelle et multi-physique du comportement acoustique de milieux poroélastiques : application aux mousses de faible densité / Multi-scale and multi-physics modeling and simulation of acoustic behavior of poroelastic media : application to low density foamsHoang, Minh Tan 03 December 2012 (has links)
L'objectif de ce mémoire de recherche est de déterminer les propriétés acoustiques des milieux poroélastiques à partir d'une démarche multi-échelle et multi-physique. Il traite d'échantillons réels de mousses, à cellules ouvertes ou partiellement fermées, dont les propriétés microstructurales sont caractérisées par des techniques d'imagerie. Cette information est utilisée afin d'identifier une cellule périodique idéalisée tridimensionnelle, qui soit représentative du comportement acoustique du milieu poreux réel. Les paramètres gouvernant les propriétés acoustiques du milieu sont obtenus en appliquant la méthode d'homogénéisation des structures périodiques. Dans une première étape, la structure des mousses est supposée indéformable. Il a été montré que pour le cas d'une distribution étroite de tailles caractéristiques de la géométrie locale, le comportement macroscopique d'une mousse à cellule ouverte peut être calculé à partir des propriétés géométriques locales de manière directe. Dans le cas d'une distribution étendue, le comportement acoustique du milieu est gouverné par des tailles critiques qui sont déterminées à partir de la porosité et de la perméabilité statique pour une mousse à cellules ouvertes ; pour une mousse à cellules partiellement fermées il est nécessaire d'identifier en plus une dimension connue de la géométrie locale. Nos résultats sont comparés avec succès à des données expérimentales obtenues par des mesures au tube d'impédance. Dans une seconde étape, les propriétés élastiques effectives du milieu poreux sont déterminées. Une modélisation par éléments finis de la cellule représentative a été mise en œuvre. Les paramètres élastiques calculés sont finalement comparés avec les données de la littérature, ainsi qu'à des essais mécaniques / This work aims at determining the acoustical properties of poro-elastic media through a multi-scale method. Some imaging techniques (tomography and micrographs) allow to estimate some quantitative microstructure properties of foams containing open or partially closed cells. These properties are used in order to clarify the features of a representative three-dimensional unit cell of a periodic structure, which mimics the behaviour of the real foam. All parameters controlling the acoustical properties of the porous foam are obtained by using the homogenization of periodic structures. In a first step, the structure of the foam is assumed to be rigid. It was shown that, in the case of a narrow distribution of the characteristic size of the local geometry, a direct computation of the macroscopic behaviour from the local geometrical properties is consistent with the measured acoustical properties. For a wide distribution of pore size, the acoustical behaviour is controlled by critical sizes that are obtained from porosity and static permeability for an open-cell foam, while for partially closed cells, the identification of a complementary characteristic dimension within the pores becomes necessary (e.g. closure rate of membranes). Our results compare well with data obtained from an impedance tube set-up. In a second step, effective elastic properties are computed through a modelling of the foam structure by finite elements. The computed elastic parameters are finally compared with data coming from the literature and with results of mechanical tests
|
Page generated in 0.092 seconds