• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 14
  • 13
  • 7
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

k-S-Rings

Turner, Emma Louise 02 July 2012 (has links) (PDF)
For a finite group G we study certain rings called k-S-rings, one for each non-negative integer k, where the 1-S-ring is the centralizer ring of G. These rings have the property that the (k+1)-S-ring determines the k-S-ring. We show that the 4-S-ring determines G when G is any group with finite classes. We show that the 3-S-ring determines G for any finite group G, thus giving an answer to a question of Brauer. We show the 2-characters defined by Frobenius and the extended 2-characters of Ken Johnson are characters of representations of the 2-S-ring of G. We find the character table for the 2-S-ring of the dihedral groups of order 2n, n odd, and classify groups with commutative 3-S-ring.
22

Character Tables of Metacyclic Groups

Skabelund, Dane Christian 11 March 2013 (has links) (PDF)
We show that any two split metacyclic groups with the same character tables are isomorphic. We then use this to show that among metacyclic groups that are either 2-groups or are of odd order divisible by at most two primes, that the dihedral and generalized quaternion groups of order 2^n, n = 3, are the only pairs that have the same character tables.
23

A Self-Contained Review of Thompson's Fixed-Point-Free Automorphism Theorem

Sracic, Mario F. 19 June 2014 (has links)
No description available.
24

A characterization of the 2-fusion system of L_4(q)

Lynd, Justin 22 June 2012 (has links)
No description available.
25

CLOSED GEODESICS ON COMPACT DEVELOPABLE ORBIFOLDS

Dragomir, George C. 10 1900 (has links)
<p>Existence of closed geodesics on compact manifolds was first proved by Lyusternik and Fet in the 1950s using Morse theory, and the corresponding problem for orbifolds was studied by Guruprasad and Haefliger, who proved existence of a closed geodesic of positive length in numerous cases. In this thesis, we develop an alternative approach to the problem of existence of closed geodesics on compact orbifolds by studying the geometry of group actions. We give an independent and elementary proof that recovers and extends the results of Guruprasad and Haefliger for developable orbifolds. We show that every compact orbifold of dimension 2, 3, 5 or 7 admits a closed geodesic of positive length, and we give an inductive argument that reduces the existence problem to the case of a compact developable orbifold of even dimension whose singular locus is zero-dimensional and whose orbifold fundamental group is infinite torsion and of odd exponent. Stronger results are obtained under curvature assumptions. For instance, one can show that infinite torsion groups do not act geometrically on simply connected manifolds of nonpositive or nonnegative curvature, and we apply this to prove existence of closed geodesics for compact orbifolds of nonpositive or nonnegative curvature. In the general case, the problem of existence of closed geodesics on compact orbifolds is seen to be intimately related to the group-theoretic question of finite presentability of infinite torsion groups, and we explore these and other properties of the orbifold fundamental group in the last chapter.</p> / Doctor of Philosophy (PhD)
26

Cutting planes in mixed integer programming: theory and algorithms

Tyber, Steven Jay 19 February 2013 (has links)
Recent developments in mixed integer programming have highlighted the need for multi-row cuts. To this day, the performance of such cuts has typically fallen short of the single-row Gomory mixed integer cut. This disparity between the theoretical need and the practical shortcomings of multi-row cuts motivates the study of both the mixed integer cut and multi-row cuts. In this thesis, we build on the theoretical foundations of the mixed integer cut and develop techniques to derive multi-row cuts. The first chapter introduces the mixed integer programming problem. In this chapter, we review the terminology and cover some basic results that find application throughout this thesis. Furthermore, we describe the practical solution of mixed integer programs, and in particular, we discuss the role of cutting planes and our contributions to this theory. In Chapter 2, we investigate the Gomory mixed integer cut from the perspective of group polyhedra. In this setting, the mixed integer cut appears as a facet of the master cyclic group polyhedron. Our chief contribution is a characterization of the adjacent facets and the extreme points of the mixed integer cut. This provides insight into the families of cuts that may work well in conjunction with the mixed integer cut. We further provide extensions of these results under mappings between group polyhedra. For the remainder of this thesis we explore a framework for deriving multi-row cuts. For this purpose, we favor the method of superadditive lifting. This technique is largely driven by our ability to construct superadditive under-approximations of a special value function known as the lifting function. We devote our effort to precisely this task. Chapter 3 reviews the theory behind superadditive lifting and returns to the classical problem of lifted flow cover inequalities. For this specific example, the lifting function we wish to approximate is quite complicated. We overcome this difficulty by adopting an indirect method for proving the validity of a superadditive approximation. Finally, we adapt the idea to high-dimensional lifting problems, where evaluating the exact lifting function often poses an immense challenge. Thus we open entirely unexplored problems to the powerful technique of lifting. Next, in Chapter 4, we consider the computational aspects of constructing strong superadditive approximations. Our primary contribution is a finite algorithm that constructs non-dominated superadditive approximations. This can be used to build superadditive approximations on-the-fly to strengthen cuts derived during computation. Alternately, it can be used offline to guide the search for strong superadditive approximations through numerical examples. We follow up in Chapter 5 by applying the ideas of Chapters 3 and 4 to high-dimensional lifting problems. By working out explicit examples, we are able to identify non-dominated superadditive approximations for high-dimensional lifting functions. These approximations strengthen existing families of cuts obtained from single-row relaxations. Lastly, we show via the stable set problem how the derivation of the lifting function and its superadditive approximation can be entirely embedded in the computation of cuts. Finally, we conclude by identifying future avenues of research that arise as natural extensions of the work in this thesis.
27

The Drinfeld Double of Dihedral Groups and Integrable Systems

Peter Finch Unknown Date (has links)
A little over 20 years ago Drinfeld presented the quantum (or Drinfeld) double construction. This construction takes any Hopf algebra and embeds it in a larger quasi-triangular Hopf algebra, which contains an algebraic solution to the constant Yang–Baxter equation. One such class of algebras consists of the Drinfeld doubles of finite groups, which are currently of interest due to their connections with non-Abelian anyons. The smallest non-commutative Drinfeld double of a finite group algebra is the Drinfeld double of D3 , the dihedral group of order six, which was recently used to construct solutions to the Yang–Baxter equation cor- responding to 2-state and 3-state integrable spin chains with periodic boundary conditions. In this thesis we construct R-matrices from the Drinfeld double of dihedral group algebras, D(Dn) and consider their associated integrable systems. The 3-state spin chain from D(D3) is generalised to include open boundaries and it is also shown that there exists a more general R-matrix for this algebra. For general D(Dn) an R-matrix is constructed as a descendant of the zero-field six-vertex model.
28

The Drinfeld Double of Dihedral Groups and Integrable Systems

Peter Finch Unknown Date (has links)
A little over 20 years ago Drinfeld presented the quantum (or Drinfeld) double construction. This construction takes any Hopf algebra and embeds it in a larger quasi-triangular Hopf algebra, which contains an algebraic solution to the constant Yang–Baxter equation. One such class of algebras consists of the Drinfeld doubles of finite groups, which are currently of interest due to their connections with non-Abelian anyons. The smallest non-commutative Drinfeld double of a finite group algebra is the Drinfeld double of D3 , the dihedral group of order six, which was recently used to construct solutions to the Yang–Baxter equation cor- responding to 2-state and 3-state integrable spin chains with periodic boundary conditions. In this thesis we construct R-matrices from the Drinfeld double of dihedral group algebras, D(Dn) and consider their associated integrable systems. The 3-state spin chain from D(D3) is generalised to include open boundaries and it is also shown that there exists a more general R-matrix for this algebra. For general D(Dn) an R-matrix is constructed as a descendant of the zero-field six-vertex model.
29

Classifying Triply-Invariant Subspaces

Adams, Lynn I. 13 September 2007 (has links)
No description available.
30

Random generation and chief length of finite groups

Menezes, Nina E. January 2013 (has links)
Part I of this thesis studies P[subscript(G)](d), the probability of generating a nonabelian simple group G with d randomly chosen elements, and extends this idea to consider the conditional probability P[subscript(G,Soc(G))](d), the probability of generating an almost simple group G by d randomly chosen elements, given that they project onto a generating set of G/Soc(G). In particular we show that for a 2-generated almost simple group, P[subscript(G,Soc(G))](2) 53≥90, with equality if and only if G = A₆ or S₆. Furthermore P[subscript(G,Soc(G))](2) 9≥10 except for 30 almost simple groups G, and we specify this list and provide exact values for P[subscript(G,Soc(G))](2) in these cases. We conclude Part I by showing that for all almost simple groups P[subscript(G,Soc(G))](3)≥139/150. In Part II we consider a related notion. Given a probability ε, we wish to determine d[superscript(ε)] (G), the number of random elements needed to generate a finite group G with failure probabilty at most ε. A generalisation of a result of Lubotzky bounds d[superscript(ε)](G) in terms of l(G), the chief length of G, and d(G), the minimal number of generators needed to generate G. We obtain bounds on the chief length of permutation groups in terms of the degree n, and bounds on the chief length of completely reducible matrix groups in terms of the dimension and field size. Combining these with existing bounds on d(G), we obtain bounds on d[superscript(ε)] (G) for permutation groups and completely reducible matrix groups.

Page generated in 0.0643 seconds