• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 12
  • 12
  • 8
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Model-based cluster analysis using Bayesian techniques

Lin, Dong, January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
2

To infinity and back : Logical limit laws and almost sure theories

Ahlman, Ove January 2014 (has links)
No description available.
3

Margrave: An Improved Analyzer for Access-Control and Configuration Policies

Nelson, Timothy 13 April 2010 (has links)
As our society grows more dependent on digital systems, policies that regulate access to electronic resources are becoming more common. However, such policies are notoriously difficult to configure properly, even for trained professionals. An incorrectly written access-control policy can result in inconvenience, financial damage, or even physical danger. The difficulty is more pronounced when multiple types of policy interact with each other, such as in routers on a network. This thesis presents a policy-analysis tool called Margrave. Given a query about a set of policies, Margrave returns a complete collection of scenarios that satisfy the query. Since the query language allows multiple policies to be compared, Margrave can be used to obtain an exhaustive list of the consequences of a seemingly innocent policy change. This feature gives policy authors the benefits of formal analysis without requiring that they state any formal properties about their policies. Our query language is equivalent to order-sorted first-order logic (OSL). Therefore our scenario-finding approach is, in general, only complete up to a user-provided bound on scenario size. To mitigate this limitation, we identify a class of OSL that we call Order-Sorted Effectively Propositional Logic (OS-EPL). We give a linear-time algorithm for testing membership in OS-EPL. Sentences in this class have the Finite Model Property, and thus Margrave's results on such queries are complete without user intervention.
4

Finite model finding in satisfiability modulo theories

Reynolds, Andrew Joseph 01 December 2013 (has links)
In recent years, Satisfiability Modulo Theories (SMT) solvers have emerged as powerful tools in many formal methods applications, including verification, automated theorem proving, planning and software synthesis. The expressive power of SMT allows problems from many disciplines to be handled in a single unified approach. While SMT solvers are highly effective at handling certain classes of problems due to highly tuned implementations of efficient ground decision procedures, their ability is often limited when reasoning about universally quantified first-order formulas. Since generally this class of problems is undecidable, most SMT solvers use heuristic techniques for answering unsatisfiable when quantified formulas are present. On the other hand, when the problem is satisfiable, solvers using these techniques will either run indefinitely, or give up after some predetermined amount of effort. In a majority of formal methods applications, it is critical that the SMT solver be able to determine when such a formula is satisfiable, especially when it can return some representation of a model for the formula. This dissertation introduces new techniques for finding models for SMT formulas containing quantified first-order formulas. We will focus our attention on finding finite models, that is, models whose domain elements can be represented as a finite set. We give a procedure that is both finite model complete and refutationally complete for a fragment of first-order logic that occurs commonly in practice.
5

A Framework for Exploring Finite Models

Saghafi, Salman 30 April 2015 (has links)
This thesis presents a framework for understanding first-order theories by investigating their models. A common application is to help users, who are not necessarily experts in formal methods, analyze software artifacts, such as access-control policies, system configurations, protocol specifications, and software designs. The framework suggests a strategy for exploring the space of finite models of a theory via augmentation. Also, it introduces a notion of provenance information for understanding the elements and facts in models with respect to the statements of the theory. The primary mathematical tool is an information-preserving preorder, induced by the homomorphism on models, defining paths along which models are explored. The central algorithmic ideas consists of a controlled construction of the Herbrand base of the input theory followed by utilizing SMT-solving for generating models that are minimal under the homomorphism preorder. Our framework for model-exploration is realized in Razor, a model-finding assistant that provides the user with a read-eval-print loop for investigating models.
6

Expressiveness and Succinctness of First-Order Logic on Finite Words

Weis, Philipp P 13 May 2011 (has links)
Expressiveness, and more recently, succinctness, are two central concerns of finite model theory and descriptive complexity theory. Succinctness is particularly interesting because it is closely related to the complexity-theoretic trade-off between parallel time and the amount of hardware. We develop new bounds on the expressiveness and succinctness of first-order logic with two variables on finite words, present a related result about the complexity of the satisfiability problem for this logic, and explore a new approach to the generalized star-height problem from the perspective of logical expressiveness. We give a complete characterization of the expressive power of first-order logic with two variables on finite words. Our main tool for this investigation is the classical Ehrenfeucht-Fra¨ıss´e game. Using our new characterization, we prove that the quantifier alternation hierarchy for this logic is strict, settling the main remaining open question about the expressiveness of this logic. A second important question about first-order logic with two variables on finite words is about the complexity of the satisfiability problem for this logic. Previously it was only known that this problem is NP-hard and in NEXP. We prove a polynomialsize small-model property for this logic, leading to an NP algorithm and thus proving that the satisfiability problem for this logic is NP-complete. Finally, we investigate one of the most baffling open problems in formal language theory: the generalized star-height problem. As of today, we do not even know whether there exists a regular language that has generalized star-height larger than 1. This problem can be phrased as an expressiveness question for first-order logic with a restricted transitive closure operator, and thus allows us to use established tools from finite model theory to attack the generalized star-height problem. Besides our contribution to formalize this problem in a purely logical form, we have developed several example languages as candidates for languages of generalized star-height at least 2. While some of them still stand as promising candidates, for others we present new results that prove that they only have generalized star-height 1.
7

Pairings of binary reflexive relational structures

Chishwashwa, Nyumbu January 2007 (has links)
Masters of Science / The main purpose of this thesis is to study the interplay between relational structures and topology, and to portray pairings in terms of some finite poset models and order preserving maps. We show the interrelations between the categories of topological spaces, closure spaces and relational structures. We study the 4-point non-Hausdorff model S4 weakly homotopy equivalent to the circle s'. We study pairings of some objects in the category of relational structures, similar to the multiplication of Hopf spaces in topology. The multiplication S4 x S4 ---7 S4 fails to be order preserving for posets. Nevertheless, applying a single barycentric subdivision on S4 to get Ss, an 8-point model of the circle enables us to define an order preserving poset map Ss x Ss ---7 S4' Restricted to the axes, this map yields weak homotopy equivalences Ss ---7 S4' Hence it is a pairing. Further, using the non-Hausdorff join Ss ® Ss, we obtain a version of the Hopf map Ss ® Ss ---7 §S4. This model of the Hopf map is in fact a map of non-Hausdorff double mapping cylinders.
8

Randomness in complexity theory and logics

Eickmeyer, Kord 01 September 2011 (has links)
Die vorliegende Dissertation besteht aus zwei Teilen, deren gemeinsames Thema in der Frage besteht, wie mächtig Zufall als Berechnungsressource ist. Im ersten Teil beschäftigen wir uns mit zufälligen Strukturen, die -- mit hoher Wahrscheinlichkeit -- Eigenschaften haben können, die von Computeralgorithmen genutzt werden können. In zwei konkreten Fällen geben wir bis dahin unbekannte deterministische Konstruktionen solcher Strukturen: Wir derandomisieren eine randomisierte Reduktion von Alekhnovich und Razborov, indem wir bestimmte unbalancierte bipartite Expandergraphen konstruieren, und wir geben eine Reduktion von einem Problem über bipartite Graphen auf das Problem, den minmax-Wert in Dreipersonenspielen zu berechnen. Im zweiten Teil untersuchen wir die Ausdrucksstärke verschiedener Logiken, wenn sie durch zufällige Relationssymbole angereichert werden. Unser Ziel ist es, Techniken aus der deskriptiven Komplexitätstheorie für die Untersuchung randomisierter Komplexitätsklassen nutzbar zu machen, und tatsächlich können wir zeigen, dass unsere randomisierten Logiken randomisierte Komlexitätsklassen einfangen, die in der Komplexitätstheorie untersucht werden. Unter Benutzung starker Ergebnisse über die Logik erster Stufe und die Berechnungsstärke von Schaltkreisen beschränkter Tiefe geben wir sowohl positive als auch negative Derandomisierungsergebnisse für unsere Logiken. Auf der negativen Seite zeigen wir, dass randomisierte erststufige Logik gegenüber normaler erststufiger Logik an Ausdrucksstärke gewinnt, sogar auf Strukturen mit einer eingebauten Additionsrelation. Außerdem ist sie nicht auf geordneten Strukturen in monadischer zweitstufiger Logik enthalten, und auch nicht in infinitärer Zähllogik auf beliebigen Strukturen. Auf der positiven Seite zeigen wir, dass randomisierte erststufige Logik auf Strukturen mit einem unären Vokabular derandomisiert werden kann und auf additiven Strukturen in monadischer Logik zweiter Stufe enthalten ist. / This thesis is comprised of two main parts whose common theme is the question of how powerful randomness as a computational resource is. In the first part we deal with random structures which possess -- with high probability -- properties than can be exploited by computer algorithms. We then give two new deterministic constructions for such structures: We derandomise a randomised reduction due to Alekhnovich and Razborov by constructing certain unbalanced bipartite expander graphs, and we give a reduction from a problem concerning bipartite graphs to the problem of computing the minmax-value in three-player games. In the second part we study the expressive power of various logics when they are enriched by random relation symbols. Our goal is to bridge techniques from descriptive complexity with the study of randomised complexity classes, and indeed we show that our randomised logics do capture complexity classes under study in complexity theory. Using strong results on the expressive power of first-order logic and the computational power of bounded-depth circuits, we give both positive and negative derandomisation results for our logics. On the negative side, we show that randomised first-order logic gains expressive power over standard first-order logic even on structures with a built-in addition relation. Furthermore, it is not contained in monadic second-order logic on ordered structures, nor in infinitary counting logic on arbitrary structures. On the positive side, we show that randomised first-order logic can be derandomised on structures with a unary vocabulary and is contained in monadic second-order logic on additive structures.
9

Expressibility of higher-order logics on relational databases : proper hierarchies : a dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Information Systems at Massey University, Wellington, New Zealand

Ferrarotti, Flavio Antonio Unknown Date (has links)
We investigate the expressive power of different fragments of higher-order logics over finite relational structures (or equivalently, relational databases) with special emphasis in higher-order logics of order greater than or equal three. Our main results concern the study of the effect on the expressive power of higher-order logics, of simultaneously bounding the arity of the higher-order variables and the alternation of quantifiers.
10

Um sistema infinitário para a lógica de menor ponto fixo / A infinitary system of the logic of least fixed-point

Arruda, Alexandre Matos January 2007 (has links)
ARRUDA, Alexandre Matos. Um sistema infinitário para a lógica de menor ponto fixo. 2007. 91 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Departamento de Computação, Fortaleza-CE, 2007. / Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-05-20T15:28:27Z No. of bitstreams: 1 2007_dis_amarruda.pdf: 427889 bytes, checksum: b0a54f14f17ff89b515a4101e02f5b58 (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-05-20T15:29:23Z (GMT) No. of bitstreams: 1 2007_dis_amarruda.pdf: 427889 bytes, checksum: b0a54f14f17ff89b515a4101e02f5b58 (MD5) / Made available in DSpace on 2016-05-20T15:29:23Z (GMT). No. of bitstreams: 1 2007_dis_amarruda.pdf: 427889 bytes, checksum: b0a54f14f17ff89b515a4101e02f5b58 (MD5) Previous issue date: 2007 / The notion of the least fixed-point of an operator is widely applied in computer science as, for instance, in the context of query languages for relational databases. Some extensions of FOL with _xed-point operators on finite structures, as the least fixed-point logic (LFP), were proposed to deal with problem problems related to the expressivity of FOL. LFP captures the complexity class PTIME over the class of _nite ordered structures. The descriptive characterization of computational classes is a central issue within _nite model theory (FMT). Trakhtenbrot's theorem, considered the starting point of FMT, states that validity over finite models is not recursively enumerable, that is, completeness fails over finite models. This result is based on an underlying assumption that any deductive system is of finite nature. However, we can relax such assumption as done in the scope of proof theory for arithmetic. Proof theory has roots in the Hilbert's programme. Proof theoretical consequences are, for instance, related to normalization theorems, consistency, decidability, and complexity results. The proof theory for arithmetic is also motivated by Godel incompleteness theorems. It aims to o_er an example of a true mathematically meaningful principle not derivable in first-order arithmetic. One way of presenting this proof is based on a definition of a proof system with an infinitary rule, the w-rule, that establishes the consistency of first-order arithmetic through a proof-theoretical perspective. Motivated by this proof, here we will propose an in_nitary proof system for LFP that will allow us to investigate proof theoretical properties. With such in_nitary deductive system, we aim to present a proof theory for a logic traditionally defined within the scope of FMT. It opens up an alternative way of proving results already obtained within FMT and also new results through a proof theoretical perspective. Moreover, we will propose a normalization procedure with some restrictions on the rules, such this deductive system can be used in a theorem prover to compute queries on relational databases. / A noção de menor ponto-fixo de um operador é amplamente aplicada na ciência da computação como, por exemplo, no contexto das linguagens de consulta para bancos de dados relacionais. Algumas extensões da Lógica de Primeira-Ordem (FOL)1 com operadores de ponto-fixo em estruturas finitas, como a lógica de menor ponto-fixo (LFP)2, foram propostas para lidar com problemas relacionados á expressividade de FOL. A LFP captura as classes de complexidade PTIME sobre a classe das estruturas finitas ordenadas. A caracterização descritiva de classes computacionais é uma abordagem central em Teoria do Modelos Finitos (FMT)3. O teorema de Trakhtenbrot, considerado o ponto de partida para FMT, estabelece que a validade sobre modelos finitos não é recursivamente enumerável, isto é, a completude falha sobre modelos finitos. Este resultado é baseado na hipótese de que qualquer sistema dedutivo é de natureza finita. Entretanto, nos podemos relaxar tal hipótese como foi feito no escopo da teoria da prova para aritmética. A teoria da prova tem raízes no programa de Hilbert. Conseqüências teóricas da noção de prova são, por exemplo, relacionadas a teoremas de normalização, consistência, decidibilidade, e resultados de complexidade. A teoria da prova para aritmética também é motivada pelos teoremas de incompletude de Gödel, cujo alvo foi fornecer um exemplo de um princípio matemático verdadeiro e significativo que não é derivável na aritmética de primeira-ordem. Um meio de apresentar esta prova é baseado na definição de um sistema de prova com uma regra infinitária, a w-rule, que estabiliza a consistência da aritmética de primeira-ordem através de uma perspectiva de teoria da prova. Motivados por esta prova, iremos propor aqui um sistema infinitário de prova para LFP que nos permitirá investigar propriedades em teoria da prova. Com tal sistema dedutivo infinito, pretendemos apresentar uma teoria da prova para uma lógica tradicionalmente definida no escopo de FMT. Permanece aberto um caminho alternativo de provar resultados já obtidos com FMT e também novos resultados do ponto de vista da teoria da prova. Além disso, iremos propor um procedimento de normalização com restrições para este sistema dedutivo, que pode ser usado em um provador de teoremas para computar consultas em banco de dados relacionais

Page generated in 0.0648 seconds