1 |
Model-based cluster analysis using Bayesian techniquesLin, Dong, January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
|
2 |
To infinity and back : Logical limit laws and almost sure theoriesAhlman, Ove January 2014 (has links)
No description available.
|
3 |
Expressiveness and Succinctness of First-Order Logic on Finite WordsWeis, Philipp P 13 May 2011 (has links)
Expressiveness, and more recently, succinctness, are two central concerns of finite model theory and descriptive complexity theory. Succinctness is particularly interesting because it is closely related to the complexity-theoretic trade-off between parallel time and the amount of hardware. We develop new bounds on the expressiveness and succinctness of first-order logic with two variables on finite words, present a related result about the complexity of the satisfiability problem for this logic, and explore a new approach to the generalized star-height problem from the perspective of logical expressiveness.
We give a complete characterization of the expressive power of first-order logic with two variables on finite words. Our main tool for this investigation is the classical Ehrenfeucht-Fra¨ıss´e game. Using our new characterization, we prove that the quantifier alternation hierarchy for this logic is strict, settling the main remaining open question about the expressiveness of this logic.
A second important question about first-order logic with two variables on finite words is about the complexity of the satisfiability problem for this logic. Previously it was only known that this problem is NP-hard and in NEXP. We prove a polynomialsize small-model property for this logic, leading to an NP algorithm and thus proving that the satisfiability problem for this logic is NP-complete.
Finally, we investigate one of the most baffling open problems in formal language theory: the generalized star-height problem. As of today, we do not even know whether there exists a regular language that has generalized star-height larger than 1. This problem can be phrased as an expressiveness question for first-order logic with a restricted transitive closure operator, and thus allows us to use established tools from finite model theory to attack the generalized star-height problem. Besides our contribution to formalize this problem in a purely logical form, we have developed several example languages as candidates for languages of generalized star-height at least 2. While some of them still stand as promising candidates, for others we present new results that prove that they only have generalized star-height 1.
|
4 |
Randomness in complexity theory and logicsEickmeyer, Kord 01 September 2011 (has links)
Die vorliegende Dissertation besteht aus zwei Teilen, deren gemeinsames Thema in der Frage besteht, wie mächtig Zufall als Berechnungsressource ist. Im ersten Teil beschäftigen wir uns mit zufälligen Strukturen, die -- mit hoher Wahrscheinlichkeit -- Eigenschaften haben können, die von Computeralgorithmen genutzt werden können. In zwei konkreten Fällen geben wir bis dahin unbekannte deterministische Konstruktionen solcher Strukturen: Wir derandomisieren eine randomisierte Reduktion von Alekhnovich und Razborov, indem wir bestimmte unbalancierte bipartite Expandergraphen konstruieren, und wir geben eine Reduktion von einem Problem über bipartite Graphen auf das Problem, den minmax-Wert in Dreipersonenspielen zu berechnen. Im zweiten Teil untersuchen wir die Ausdrucksstärke verschiedener Logiken, wenn sie durch zufällige Relationssymbole angereichert werden. Unser Ziel ist es, Techniken aus der deskriptiven Komplexitätstheorie für die Untersuchung randomisierter Komplexitätsklassen nutzbar zu machen, und tatsächlich können wir zeigen, dass unsere randomisierten Logiken randomisierte Komlexitätsklassen einfangen, die in der Komplexitätstheorie untersucht werden. Unter Benutzung starker Ergebnisse über die Logik erster Stufe und die Berechnungsstärke von Schaltkreisen beschränkter Tiefe geben wir sowohl positive als auch negative Derandomisierungsergebnisse für unsere Logiken. Auf der negativen Seite zeigen wir, dass randomisierte erststufige Logik gegenüber normaler erststufiger Logik an Ausdrucksstärke gewinnt, sogar auf Strukturen mit einer eingebauten Additionsrelation. Außerdem ist sie nicht auf geordneten Strukturen in monadischer zweitstufiger Logik enthalten, und auch nicht in infinitärer Zähllogik auf beliebigen Strukturen. Auf der positiven Seite zeigen wir, dass randomisierte erststufige Logik auf Strukturen mit einem unären Vokabular derandomisiert werden kann und auf additiven Strukturen in monadischer Logik zweiter Stufe enthalten ist. / This thesis is comprised of two main parts whose common theme is the question of how powerful randomness as a computational resource is. In the first part we deal with random structures which possess -- with high probability -- properties than can be exploited by computer algorithms. We then give two new deterministic constructions for such structures: We derandomise a randomised reduction due to Alekhnovich and Razborov by constructing certain unbalanced bipartite expander graphs, and we give a reduction from a problem concerning bipartite graphs to the problem of computing the minmax-value in three-player games. In the second part we study the expressive power of various logics when they are enriched by random relation symbols. Our goal is to bridge techniques from descriptive complexity with the study of randomised complexity classes, and indeed we show that our randomised logics do capture complexity classes under study in complexity theory. Using strong results on the expressive power of first-order logic and the computational power of bounded-depth circuits, we give both positive and negative derandomisation results for our logics. On the negative side, we show that randomised first-order logic gains expressive power over standard first-order logic even on structures with a built-in addition relation. Furthermore, it is not contained in monadic second-order logic on ordered structures, nor in infinitary counting logic on arbitrary structures. On the positive side, we show that randomised first-order logic can be derandomised on structures with a unary vocabulary and is contained in monadic second-order logic on additive structures.
|
5 |
Expressibility of higher-order logics on relational databases : proper hierarchies : a dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Information Systems at Massey University, Wellington, New ZealandFerrarotti, Flavio Antonio Unknown Date (has links)
We investigate the expressive power of different fragments of higher-order logics over finite relational structures (or equivalently, relational databases) with special emphasis in higher-order logics of order greater than or equal three. Our main results concern the study of the effect on the expressive power of higher-order logics, of simultaneously bounding the arity of the higher-order variables and the alternation of quantifiers.
|
6 |
Um sistema infinitário para a lógica de menor ponto fixo / A infinitary system of the logic of least fixed-pointArruda, Alexandre Matos January 2007 (has links)
ARRUDA, Alexandre Matos. Um sistema infinitário para a lógica de menor ponto fixo. 2007. 91 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Departamento de Computação, Fortaleza-CE, 2007. / Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-05-20T15:28:27Z
No. of bitstreams: 1
2007_dis_amarruda.pdf: 427889 bytes, checksum: b0a54f14f17ff89b515a4101e02f5b58 (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-05-20T15:29:23Z (GMT) No. of bitstreams: 1
2007_dis_amarruda.pdf: 427889 bytes, checksum: b0a54f14f17ff89b515a4101e02f5b58 (MD5) / Made available in DSpace on 2016-05-20T15:29:23Z (GMT). No. of bitstreams: 1
2007_dis_amarruda.pdf: 427889 bytes, checksum: b0a54f14f17ff89b515a4101e02f5b58 (MD5)
Previous issue date: 2007 / The notion of the least fixed-point of an operator is widely applied in computer science as, for instance, in the context of query languages for relational databases. Some extensions of FOL with _xed-point operators on finite structures, as the least fixed-point logic (LFP), were proposed to deal with problem problems related to the expressivity of FOL. LFP captures the complexity class PTIME over the class of _nite ordered structures. The descriptive characterization of computational classes is a central issue within _nite model theory (FMT). Trakhtenbrot's theorem, considered the starting point of FMT, states that validity over finite models is not recursively enumerable, that is, completeness fails over finite models. This result is based on an underlying assumption that any deductive system is of finite nature. However, we can relax such assumption as done in the scope of proof theory for arithmetic. Proof theory has roots in the Hilbert's programme. Proof theoretical consequences are, for instance, related to normalization theorems, consistency, decidability, and complexity results. The proof theory for arithmetic is also motivated by Godel incompleteness theorems. It aims to o_er an example of a true mathematically meaningful principle not derivable in first-order arithmetic. One way of presenting this proof is based on a definition of a proof system with an infinitary rule, the w-rule, that establishes the consistency of first-order arithmetic through a proof-theoretical perspective. Motivated by this proof, here we will propose an in_nitary proof system for LFP that will allow us to investigate proof theoretical properties. With such in_nitary deductive system, we aim to present a proof theory for a logic traditionally defined within the scope of FMT. It opens up an alternative way of proving results already obtained within FMT and also new results through a proof theoretical perspective. Moreover, we will propose a normalization procedure with some restrictions on the rules, such this deductive system can be used in a theorem prover to compute queries on relational databases. / A noção de menor ponto-fixo de um operador é amplamente aplicada na ciência da computação como, por exemplo, no contexto das linguagens de consulta para bancos de dados relacionais. Algumas extensões da Lógica de Primeira-Ordem (FOL)1 com operadores de ponto-fixo em estruturas finitas, como a lógica de menor ponto-fixo (LFP)2, foram propostas para lidar com problemas relacionados á expressividade de FOL. A LFP captura as classes de complexidade PTIME sobre a classe das estruturas finitas ordenadas. A caracterização descritiva de classes computacionais é uma abordagem central em Teoria do Modelos Finitos (FMT)3. O teorema de Trakhtenbrot, considerado o ponto de partida para FMT, estabelece que a validade sobre modelos finitos não é recursivamente enumerável, isto é, a completude falha sobre modelos finitos. Este resultado é baseado na hipótese de que qualquer sistema dedutivo é de natureza finita. Entretanto, nos podemos relaxar tal hipótese como foi feito no escopo da teoria da prova para aritmética. A teoria da prova tem raízes no programa de Hilbert. Conseqüências teóricas da noção de prova são, por exemplo, relacionadas a teoremas de normalização, consistência, decidibilidade, e resultados de complexidade. A teoria da prova para aritmética também é motivada pelos teoremas de incompletude de Gödel, cujo alvo foi fornecer um exemplo de um princípio matemático verdadeiro e significativo que não é derivável na aritmética de primeira-ordem. Um meio de apresentar esta prova é baseado na definição de um sistema de prova com uma regra infinitária, a w-rule, que estabiliza a consistência da aritmética de primeira-ordem através de uma perspectiva de teoria da prova. Motivados por esta prova, iremos propor aqui um sistema infinitário de prova para LFP que nos permitirá investigar propriedades em teoria da prova. Com tal sistema dedutivo infinito, pretendemos apresentar uma teoria da prova para uma lógica tradicionalmente definida no escopo de FMT. Permanece aberto um caminho alternativo de provar resultados já obtidos com FMT e também novos resultados do ponto de vista da teoria da prova. Além disso, iremos propor um procedimento de normalização com restrições para este sistema dedutivo, que pode ser usado em um provador de teoremas para computar consultas em banco de dados relacionais
|
7 |
A infinitary system of the logic of least fixed-point / Um sistema infinitÃrio para a lÃgica de menor ponto fixoAlexandre Matos Arruda 24 August 2007 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / A noÃÃo de menor ponto-fixo de um operador à amplamente aplicada na ciÃncia da computaÃÃo como, por exemplo, no contexto das linguagens de consulta para bancos de dados relacionais. Algumas extensÃes da LÃgica de Primeira-Ordem (FOL)1 com operadores de ponto-fixo em estruturas finitas, como a lÃgica de menor ponto-fixo (LFP)2, foram propostas para lidar com problemas relacionados à expressividade de FOL. A LFP captura as classes de complexidade PTIME sobre a classe das estruturas finitas ordenadas. A caracterizaÃÃo descritiva de classes computacionais à uma abordagem central em Teoria do Modelos Finitos (FMT)3. O teorema de Trakhtenbrot, considerado o ponto de partida para FMT, estabelece que a validade sobre modelos finitos nÃo à recursivamente enumerÃvel, isto Ã, a completude falha sobre modelos finitos. Este resultado à baseado na hipÃtese de que qualquer sistema dedutivo à de natureza finita. Entretanto, nos podemos relaxar tal hipÃtese como foi feito no escopo da teoria da prova para aritmÃtica. A teoria da prova tem raÃzes no programa de Hilbert. ConseqÃÃncias teÃricas da noÃÃo de prova sÃo, por exemplo, relacionadas a teoremas de normalizaÃÃo, consistÃncia, decidibilidade, e resultados de complexidade. A teoria da prova para aritmÃtica tambÃm à motivada pelos teoremas de incompletude de GÃdel, cujo alvo foi fornecer um exemplo de um princÃpio matemÃtico verdadeiro e significativo que nÃo à derivÃvel na aritmÃtica de primeira-ordem. Um meio de apresentar esta prova à baseado na definiÃÃo de um sistema de prova com uma regra infinitÃria, a w-rule, que estabiliza a consistÃncia da aritmÃtica de primeira-ordem atravÃs de uma perspectiva de teoria da prova. Motivados por esta prova, iremos propor aqui um sistema infinitÃrio de prova para LFP que nos permitirà investigar propriedades em teoria da prova. Com tal sistema dedutivo infinito, pretendemos apresentar uma teoria da prova para uma lÃgica tradicionalmente definida no escopo de FMT. Permanece aberto um caminho alternativo de provar resultados jà obtidos com FMT e tambÃm novos resultados do ponto de vista da teoria da prova. AlÃm disso, iremos propor um procedimento de normalizaÃÃo com restriÃÃes para este sistema dedutivo, que pode ser usado em um provador de teoremas para computar consultas em banco de dados relacionais / The notion of the least fixed-point of an operator is widely applied in computer science
as, for instance, in the context of query languages for relational databases. Some extensions
of FOL with _xed-point operators on finite structures, as the least fixed-point logic
(LFP), were proposed to deal with problem problems related to the expressivity of FOL.
LFP captures the complexity class PTIME over the class of _nite ordered structures. The
descriptive characterization of computational classes is a central issue within _nite model
theory (FMT). Trakhtenbrot's theorem, considered the starting point of FMT, states that
validity over finite models is not recursively enumerable, that is, completeness fails over
finite models. This result is based on an underlying assumption that any deductive system
is of finite nature. However, we can relax such assumption as done in the scope of
proof theory for arithmetic. Proof theory has roots in the Hilbert's programme. Proof
theoretical consequences are, for instance, related to normalization theorems, consistency,
decidability, and complexity results. The proof theory for arithmetic is also motivated
by Godel incompleteness theorems. It aims to o_er an example of a true mathematically
meaningful principle not derivable in first-order arithmetic. One way of presenting this
proof is based on a definition of a proof system with an infinitary rule, the w-rule, that establishes
the consistency of first-order arithmetic through a proof-theoretical perspective.
Motivated by this proof, here we will propose an in_nitary proof system for LFP that
will allow us to investigate proof theoretical properties. With such in_nitary deductive
system, we aim to present a proof theory for a logic traditionally defined within the scope
of FMT. It opens up an alternative way of proving results already obtained within FMT
and also new results through a proof theoretical perspective. Moreover, we will propose a
normalization procedure with some restrictions on the rules, such this deductive system
can be used in a theorem prover to compute queries on relational databases.
|
8 |
The structure of graphs and new logics for the characterization of Polynomial TimeLaubner, Bastian 14 June 2011 (has links)
Diese Arbeit leistet Beiträge zu drei Gebieten der deskriptiven Komplexitätstheorie. Zunächst adaptieren wir einen repräsentationsinvarianten Graphkanonisierungsalgorithmus mit einfach exponentieller Laufzeit von Corneil und Goldberg (1984) und folgern, dass die Logik "Choiceless Polynomial Time with Counting" auf Strukturen, deren Relationen höchstens Stelligkeit 2 haben, gerade die Polynomialzeit-Eigenschaften (PTIME) von Fragmenten logarithmischer Größe charakterisiert. Der zweite Beitrag untersucht die deskriptive Komplexität von PTIME-Berechnungen auf eingeschränkten Graphklassen. Wir stellen eine neuartige Normalform von Intervallgraphen vor, die sich in Fixpunktlogik mit Zählen (FP+C) definieren lässt, was bedeutet, dass FP+C auf dieser Graphklasse PTIME charakterisiert. Wir adaptieren außerdem unsere Methoden, um einen kanonischen Beschriftungsalgorithmus für Intervallgraphen zu erhalten, der sich mit logarithmischer Platzbeschränkung (LOGSPACE) berechnen lässt. Im dritten Teil der Arbeit beschäftigt uns die ungelöste Frage, ob es eine Logik gibt, die alle Polynomialzeit-Berechnungen charakterisiert. Wir führen eine Reihe von Ranglogiken ein, die die Fähigkeit besitzen, den Rang von Matrizen über Primkörpern zu berechnen. Wir zeigen, dass diese Ergänzung um lineare Algebra robuste Logiken hervor bringt, deren Ausdrucksstärke die von FP+C übertrifft. Außerdem beweisen wir, dass Ranglogiken strikt an Ausdrucksstärke gewinnen, wenn wir die Zahl an Variablen erhöhen, die die betrachteten Matrizen indizieren. Dann bauen wir eine Brücke zur klassischen Komplexitätstheorie, indem wir über geordneten Strukturen eine Reihe von Komplexitätsklassen zwischen LOGSPACE und PTIME durch Ranglogiken charakterisieren. Die Arbeit etabliert die stärkste der Ranglogiken als Kandidat für die Charakterisierung von PTIME und legt nahe, dass Ranglogiken genauer erforscht werden müssen, um weitere Fortschritte im Hinblick auf eine Logik für Polynomialzeit zu erzielen. / This thesis is making contributions to three strands of descriptive complexity theory. First, we adapt a representation-invariant, singly exponential-time graph canonization algorithm of Corneil and Goldberg (1984) and conclude that on structures whose relations are of arity at most 2, the logic "Choiceless Polynomial Time with Counting" precisely characterizes the polynomial-time (PTIME) properties of logarithmic-size fragments. The second contribution investigates the descriptive complexity of PTIME computations on restricted classes of graphs. We present a novel canonical form for the class of interval graphs which is definable in fixed-point logic with counting (FP+C), which shows that FP+C captures PTIME on this graph class. We also adapt our methods to obtain a canonical labeling algorithm for interval graphs which is computable in logarithmic space (LOGSPACE). The final part of this thesis takes aim at the open question whether there exists a logic which generally captures polynomial-time computations. We introduce a variety of rank logics with the ability to compute the ranks of matrices over (finite) prime fields. We argue that this introduction of linear algebra results in robust logics whose expressiveness surpasses that of FP+C. Additionally, we establish that rank logics strictly gain in expressiveness when increasing the number of variables that index the matrices we consider. Then we establish a direct connection to standard complexity theory by showing that in the presence of orders, a variety of complexity classes between LOGSPACE and PTIME can be characterized by suitable rank logics. Our exposition provides evidence that rank logics are a natural object to study and establishes the most expressive of our rank logics as a viable candidate for capturing PTIME, suggesting that rank logics need to be better understood if progress is to be made towards a logic for polynomial time.
|
Page generated in 0.0838 seconds