• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 104
  • 60
  • 25
  • 19
  • 14
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 415
  • 415
  • 241
  • 157
  • 94
  • 93
  • 79
  • 71
  • 71
  • 68
  • 66
  • 59
  • 58
  • 58
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Analýza chlazení koncentrátorového fotovoltaického článku / Analysis of the photovoltaic cell cooling

Hřešil, Tomáš January 2013 (has links)
This project solves the problem of cooling the photovoltaic cell. Solar cell was modeled according to a real model in SolidWorks, and subsequently created the model was simulated in SolidWorks Flow Simulation and Ansys Fluent. The use of both systems allow a comparison of their possibilities in the field of heat transfer and their suitability for the case. The conclusion summarizes the first results and outline further developments cooling design to optimize the performance of the solar cell.
112

A Finite Volume Approach For Cure Kinetics Simulation

Ma, Wei 01 January 2012 (has links) (PDF)
In our study, the Finite Volume Method (FVM) is successfully implemented to simulate thermal process of polymerization. This application is verified based on the obtained plots compared with those from other two methods as well as experimental data. After the verification, a method is developed to optimize heat history in order to reduce processing time and in the meantime to maintain the uniformity of cure state. Also sensitivities of cure state to different parameters are examined. Besides, a correlation between temperature and the degree of polymerization profile on sample surface is found using on-line monitoring method.
113

Implementation of the phase field method with the Immersed Boundary Method for application to wave energy converters

Jain, Sahaj Sunil 14 August 2023 (has links)
Consider a bottom-hinged Oscillating Wave Surge Converter (OWSC): This device oscillates due to the hydrodynamic forces applied on it by the action of ocean waves. The focus of this thesis is to build upon the in-house multi-block generalized coordinate finite volume solver GenIDLEST using a collocated grid arrangement within the framework of the fractional-step method to make it compatible to simulate such systems. The first step in this process is to deploy a convection scheme which differentiates between air and water. This process is further complicated by the 1:1000 density and 1:100 viscosity ratio between the two fluids. For this purpose, a phase field method is chosen for its ease of implementation and proven boundedness and conservativeness properties. Extensive validation and verification using standard test cases, such as droplet in shear flow, Rayleigh Taylor instability, and the Dam Break Problem is carried out. This development is then coupled with the present Immersed Boundary Module which is used to simulate the presence of moving bodies and again verified against test cases, such as the Dam Break problem with a vertical obstacle and heave decay of a partially submerged buoyant cylinder. Finally, a relaxation zone technique is used to generate waves and a numerical beach technique is used to absorb them. These are then used to simulate the Oscillating Surge Wave Converter. / Master of Science / An Oscillating Wave Surge Converter can be best described as a rectangular flap, hinged at the bottom, rotating under the influence of ocean waves from which energy is harvested. The singular aim of this thesis is to model this device using Computational Fluid Dynamics (CFD). More specifically, the aim is to model this dynamic device with the full Navier Stokes Equations, which include inertial forces, arising due to the motion of the fluid, viscous forces which dissipate energy, and body forces such as gravity. This involves three key steps: 1. Modelling the air-water interface using a convection scheme. A phase field method is used to differentiate between the two fluids. This task is made more challenging because of the very large density and viscosity differences between air and water. 2. Model dynamic moving geometries in a time-dependent framework. For this, we rely on the Immersed Boundary Method. 3. Develop a numerical apparatus to generate and absorb ocean waves. For this, we rely on the Relaxation Zone and Numerical Beach Method. These developments are validated in different canonical problems and finally applied to a two-dimensional oscillating surge wave energy converter.
114

Numerical simulation of paper drying process under infrared radiation emitter

BHAGAT, KISHNA NAND 18 April 2008 (has links)
No description available.
115

Formulation of steady-state and transient potential problems using boundary elements

Druma, Calin January 1999 (has links)
No description available.
116

Ocean waves in a multi-layer shallow water system with bathymetry

Parvin, Afroja January 2018 (has links)
Mathematical modeling of ocean waves is based on the formulation and solution of the appropriate equations of continuity, momentum and the choice of proper initial and boundary conditions. Under the influence of gravity, many free surface water waves can be modeled by the shallow water equations (SWE) with the assumption that the horizontal length scale of the wave is much greater than the depth scale and the wave height is much less than the fluid's mean depth. Furthermore, to describe three dimensional flows in the hydrostatic and Boussinesq limits, the multilayer SWE model is used, where the fluid is discretized horizontally into a set of vertical layers, each having its own height, density, horizontal velocity and geopotential. In this study, we used an explicit staggered finite volume method to solve single and multilayer SWE, with and without density stratification and bathymetry, to understand the dynamic of surface waves and internal waves. We implemented a two-dimensional version of the incompressible DYNAMICO method and compare it with a one-dimensional SWE. For multilayer SWE, we considered both two layer and a linear stratification of density, with very small density gradient, consistent with Boussinesq approximation. We used Lagrangian vertical coordinate which doesn't allow mass to flow across vertical layers. Numerical examples are presented to verify multilayer SWE model against single layer SWE, in terms of the phase speed and the steepness criteria of wave profile. In addition, the phase speed of the barotropic and baroclinic mode of two-layer SWE also verified our multilayer SWE model. We found that, for multilayer SWE, waves move slower than single layer SWE and get steeper than normal when they flow across bathymetry. A series of numerical experiment were carried out to compare 1-D shallow water solutions to 2-D solutions with and without density as well as to explain the dynamics of surface wave and internal wave. We found that, a positive fluctuations on free surface causes water to rise above surface level, gravity pulls it back and the forces that acquired during the falling movement causes the water to penetrate beneath it's equilibrium level, influences the generation of internal waves. Internal waves travel considerably more slowly than surface waves. On the other hand, a bumpy or a slicky formation of surface waves is associated with the propagation of internal waves. The interaction between these two waves is therefore demonstrated and discussed. / Thesis / Master of Science (MSc) / In the modelling of ocean wave, the formulation and solution of appropriate equations and proper initial and boundary conditions are required. The shallow water equations (SWE) are derived from the conservation of mass and momentum equations, in the case where the horizontal length scale of the wave is much greater than the depth scale and the wave height is much less than the fluid's mean depth. In multilayer SWE, the fluid is discretized horizontally into a set of vertical layers, each having its own height, density, horizontal velocity and geopotential. In this study, we used an explicit staggered finite volume method to solve single and multilayer SWE, with and without density stratification and bathymetry, to understand the dynamic of surface waves and internal waves. A series of numerical experiments were carried out to validate our multilayer model. It is found that, in the presence of density differences, surface waves for the multilayer SWE move slowly and get more steep than normal when they flow across bathymetry. Also, a positive fluctuations on free surface generates internal waves at the interior of ocean which propagate along the line of density gradient.
117

Bilinear Immersed Finite Elements For Interface Problems

He, Xiaoming 02 June 2009 (has links)
In this dissertation we discuss bilinear immersed finite elements (IFE) for solving interface problems. The related research works can be categorized into three aspects: (1) the construction of the bilinear immersed finite element spaces; (2) numerical methods based on these IFE spaces for solving interface problems; and (3) the corresponding error analysis. All of these together form a solid foundation for the bilinear IFEs. The research on immersed finite elements is motivated by many real world applications, in which a simulation domain is often formed by several materials separated from each other by curves or surfaces while a mesh independent of interface instead of a body-fitting mesh is preferred. The bilinear IFE spaces are nonconforming finite element spaces and the mesh can be independent of interface. The error estimates for the interpolation of a Sobolev function in a bilinear IFE space indicate that this space has the usual approximation capability expected from bilinear polynomials, which is <i>O</i>(<i>h</i>²) in <i>L</i>² norm and <i>O</i>(<i>h</i>) in <i>H</i>¹ norm. Then the immersed spaces are applied in Galerkin, finite volume element (FVE) and discontinuous Galerkin (DG) methods for solving interface problems. Numerical examples show that these methods based on the bilinear IFE spaces have the same optimal convergence rates as those based on the standard bilinear finite element for solutions with certain smoothness. For the symmetric selective immersed discontinuous Galerkin method based on bilinear IFE, we have established its optimal convergence rate. For the Galerkin method based on bilinear IFE, we have also established its convergence. One of the important advantages of the discontinuous Galerkin method is its flexibility for both <i>p</i> and <i>h</i> mesh refinement. Because IFEs can use a mesh independent of interface, such as a structured mesh, the combination of a DG method and IFEs allows a flexible adaptive mesh independent of interface to be used for solving interface problems. That is, a mesh independent of interface can be refined wherever needed, such as around the interface and the singular source. We also develop an efficient selective immersed discontinuous Galerkin method. It uses the sophisticated discontinuous Galerkin formulation only around the locations needed, but uses the simpler Galerkin formulation everywhere else. This selective formulation leads to an algebraic system with far less unknowns than the immersed DG method without scarifying the accuracy; hence it is far more efficient than the conventional discontinuous Galerkin formulations. / Ph. D.
118

Extrapolation-based Discretization Error and Uncertainty Estimation in Computational Fluid Dynamics

Phillips, Tyrone 26 April 2012 (has links)
The solution to partial differential equations generally requires approximations that result in numerical error in the final solution. Of the different types of numerical error in a solution, discretization error is the largest and most difficult error to estimate. In addition, the accuracy of the discretization error estimates relies on the solution (or multiple solutions used in the estimate) being in the asymptotic range. The asymptotic range is used to describe the convergence of a solution, where an asymptotic solution approaches the exact solution at a rate proportional to the change in mesh spacing to an exponent equal to the formal order of accuracy. A non-asymptotic solution can result in unpredictable convergence rates introducing uncertainty in discretization error estimates. To account for the additional uncertainty, various discretization uncertainty estimators have been developed. The goal of this work is to evaluation discretization error and discretization uncertainty estimators based on Richardson extrapolation for computational fluid dynamics problems. In order to evaluate the estimators, the exact solution should be known. A select set of solutions to the 2D Euler equations with known exact solutions are used to evaluate the estimators. Since exact solutions are only available for trivial cases, two applications are also used to evaluate the estimators which are solutions to the Navier-Stokes equations: a laminar flat plate and a turbulent flat plate using the k-Ï SST turbulence model. Since the exact solutions to the Navier-Stokes equations for these cases are unknown, numerical benchmarks are created which are solutions on significantly finer meshes than the solutions used to estimate the discretization error and uncertainty. Metrics are developed to evaluate the accuracy of the error and uncertainty estimates and to study the behavior of each estimator when the solutions are in, near, and far from the asymptotic range. Based on the results, general recommendations are made for the implementation of the error and uncertainty estimators. In addition, a new uncertainty estimator is proposed with the goal of combining the favorable attributes of the discretization error and uncertainty estimators evaluated. The new estimator is evaluated using numerical solutions which were not used for development and shows improved accuracy over the evaluated estimators. / Master of Science
119

A CFD STUDY OF CAVITATION IN REAL SIZE DIESEL INJECTORS

Patouna, Stavroula 17 February 2012 (has links)
In Diesel engines, the internal flow characteristics in the fuel injection nozzles, such as the turbulence level and distribution, the cavitation pattern and the velocity profile affect significantly the air-fuel mixture in the spray and subsequently the combustion process. Since the possibility to observe experimentally and measure the flow inside real size Diesel injectors is very limited, Computational Fluid Dynamics (CFD) calculations are generally used to obtain the relevant information. The work presented within this thesis is focused on the study of cavitation in real size automotive injectors by using a commercial CFD code. It is divided in three major phases, each corresponding to a different complementary objective. The first objective of the current work is to assess the ability of the cavitation model included in the CFD code to predict cavitating flow conditions. For this, the model is validated for an injector-like study case defined in the literature, and for which experimental data is available in different operating conditions, before and after the start of cavitation. Preliminary studies are performed to analyze the effects on the solution obtained of various numerical parameters of the cavitation model itself and of the solver, and to determine the adequate setup of the model. It may be concluded that overall the cavitation model is able to predict the onset and development of cavitation accurately. Indeed, there is satisfactory agreement between the experimental data of injection rate and choked flow conditions and the corresponding numerical solution.This study serves as the basis for the physical and numerical understanding of the problem. Next, using the model configuration obtained from the previous study, unsteady flow calculations are performed for real-size single and multi-hole sac type Diesel injectors, each one with two types of nozzles, tapered and cylindrical. The objective is to validate the model with real automotive cases and to ununderstand in what way some physical factors, such as geometry, operating conditions and needle position affect the inception of cavitation and its development in the nozzle holes. These calculations are made at full needle lift and for various values of injection pressure and back-pressure. The results obtained for injection rate, momentum flux and effective injection velocity at the exit of the nozzles are compared with available CMT-Motores Térmicos in-house experimental data. Also, the cavitation pattern inside the nozzle and its effect on the internal nozzle flow is analyzed. The model predicts with reasonable accuracy the effects of geometry and operating conditions. / Patouna, S. (2012). A CFD STUDY OF CAVITATION IN REAL SIZE DIESEL INJECTORS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14723
120

Development of a 3D Modal Neutron Code with the Finite Volume Method for the Diffusion and Discrete Ordinates Transport Equations. Application to Nuclear Safety Analyses

Bernal García, Álvaro 13 November 2018 (has links)
El principal objetivo de esta tesis es el desarrollo de un Método Modal para resolver dos ecuaciones: la Ecuación de la Difusión de Neutrones y la de las Ordenadas Discretas del Transporte de Neutrones. Además, este método está basado en el Método de Volúmenes Finitos para discretizar las variables espaciales. La solución de estas ecuaciones proporciona el flujo de neutrones, que está relacionado con la potencia que se produce en los reactores nucleares, por lo que es un factor fundamental para los Análisis de Seguridad Nuclear. Por una parte, la utilización del Método Modal está justificada para realizar análisis de inestabilidades en reactores. Por otra parte, el uso del Método de Volúmenes Finitos está justificado por la utilización de este método para resolver las ecuaciones termohidráulicas, que están fuertemente acopladas con la generación de energía en el combustible nuclear. En primer lugar, esta tesis incluye la definición de estas ecuaciones y los principales métodos utilizados para resolverlas. Además, se introducen los principales esquemas y características del Método de Volúmenes Finitos. También se describen los principales métodos numéricos para el Método Modal, que incluye tanto la solución de problemas de autovalores como la solución de Ecuaciones Diferenciales Ordinarias dependientes del tiempo. A continuación, se desarrollan varios algoritmos del Método de Volúmenes Finitos para el Estado Estacionario de la Ecuación de la Difusión de Neutrones. Se consigue desarrollar una formulación multigrupo, que permite resolver el problema de autovalores para cualquier número de grupos de energía, incluyendo términos de upscattering y de fisión en varios grupos de energía. Además, se desarrollan los algoritmos para realizar la computación en paralelo. La solución anterior es la condición inicial para resolver la Ecuación de Difusión de Neutrones dependiente del tiempo. En esta tesis se utiliza un Método Modal, que transforma el Sistema de Ecuaciones Diferenciales Ordinarias en uno de mucho menor tamaño, que se resuelve con el Método de la Matriz Exponencial. Además, se ha desarrollado un método rápido para estimar el flujo adjunto a partir del directo, ya que se necesita en el Método Modal. Por otra parte, se ha desarrollado un algoritmo que resuelve el problema de autovalores de la Ecuación del Transporte de Neutrones. Este algoritmo es para la formulación de Ordenadas Discretas y el Método de Volúmenes Finitos. En concreto, se han aplicado dos tipos de cuadraturas para las Ordenadas Discretas y dos esquemas de interpolación para el Método de Volúmenes Finitos. Finalmente, se han aplicado estos métodos a diferentes tipos de reactores nucleares, incluyendo reactores comerciales. Se han evaluado los valores de la constante de multiplicación y de la potencia, ya que son las variables fundamentales en los Análisis de Seguridad Nuclear. Además, se ha realizado un análisis de sensibilidad de diferentes parámetros como la malla y métodos numéricos. En conclusión, se obtienen excelentes resultados, tanto en precisión como en coste computacional. / The main objective of this thesis is the development of a Modal Method to solve two equations: the Neutron Diffusion Equation and the Discrete Ordinates Neutron Transport Equation. Moreover, this method uses the Finite Volume Method to discretize the spatial variables. The solution of these equations gives the neutron flux, which is related to the power produced in nuclear reactors; thus, the neutron flux is a paramount variable in Nuclear Safety Analyses. On the one hand, the use of Modal Methods is justified because one uses them to perform instability analyses in nuclear reactors. On the other hand, it is worth using the Finite Volume Method because one uses it to solve thermalhydraulic equations, which are strongly coupled with the energy generation in the nuclear fuel. First, this thesis defines the equations mentioned above and the main methods to solve these equations. Furthermore, the thesis describes the major schemes and features of the Finite Volume Method. In addition, the author also introduces the major methods used in the Modal Method, which include the methods used to solve the eigenvalue problem, as well as those used to solve the time dependent Ordinary Differential Equations. Next, the author develops several algorithms of the Finite Volume Method applied to the Steady State Neutron Diffusion Equation. In addition, the thesis includes an improvement of the multigroup formulation, which solves problems involving upscattering and fission terms in several energy groups. Moreover, the author optimizes the algorithms to do calculations with parallel computing. The previous solution is used as initial condition to solve the time dependent Neutron Diffusion Equation. The author uses a Modal Method to do so, which transforms the Ordinary Differential Equations System into a smaller system that is solved by using the Exponential Matrix Method. Furthermore, the author developed a computationally efficient method to estimate the adjoint flux from the forward one, because the Modal Method uses the adjoint flux. Additionally, the thesis also presents an algorithm to solve the eigenvalue problem of the Neutron Transport Equation. This algorithm uses the Discrete Ordinates formulation and the Finite Volume Method. In particular, the author uses two types of quadratures for the Discrete Ordinates and two interpolation schemes for the Finite Volume Method. Finally, the author tested the developed methods in different types of nuclear reactors, including commercial ones. The author checks the accuracy of the values of the crucial variables in Nuclear Safety Analyses, which are the multiplication factor and the power distribution. Furthermore, the thesis includes a sensitivity analysis of several parameters, such as the mesh and numerical methods. In conclusion, excellent results are reported in both accuracy and computational cost. / El principal objectiu d'esta tesi és el desenvolupament d'un Mètode Modal per a resoldre dos equacions: l'Equació de Difusió de Neutrons i la de les Ordenades Discretes del Transport de Neutrons. A més a més, este mètode està basat en el Mètode de Volums Finits per a discretitzar les variables espacials. La solució d'estes equacions proporcionen el flux de neutrons, que està relacionat amb la potència que es produïx en els reactors nuclears; per tant, el flux de neutrons és un factor fonamental en els Anàlisis de Seguretat Nuclear. Per una banda, la utilització del Mètode Modal està justificada per a realitzar anàlisis d'inestabilitats en reactors. Per altra banda, l'ús del Mètode de Volums Finits està justificat per l'ús d'este mètode per a resoldre les equacions termohidràuliques, que estan fortament acoblades amb la generació d'energia en el combustible nuclear. En primer lloc, esta tesi inclou la definició d'estes equacions i els principals mètodes utilitzats per a resoldre-les. A més d'això, s'introduïxen els principals esquemes i característiques del Mètode de Volums Finits. Endemés, es descriuen els principals mètodes numèrics per al Mètode Modal, que inclou tant la solució del problema d'autovalors com la solució d'Equacions Diferencials Ordinàries dependents del temps. A continuació, es desenvolupa diversos algoritmes del Mètode de Volums Finits per a l'Estat Estacionari de l'Equació de Difusió de Neutrons. Es conseguix desenvolupar una formulació multigrup, que permetre resoldre el problema d'autovalors per a qualsevol nombre de grups d'energia, incloent termes d' upscattering i de fissió en diversos grups d'energia. A més a més, es desenvolupen els algoritmes per a realitzar la computació en paral·lel. La solució anterior és la condició inicial per a resoldre l'Equació de Difusió de Neutrons dependent del temps. En esta tesi s'utilitza un Mètode Modal, que transforma el Sistema d'Equacions Diferencials Ordinàries en un problema de menor tamany, que es resol amb el Mètode de la Matriu Exponencial. Endemés, s'ha desenvolupat un mètode ràpid per a estimar el flux adjunt a partir del directe, perquè es necessita en el Mètode Modal. Per altra banda, s'ha desenvolupat un algoritme que resol el problema d'autovalors de l'Equació de Transport de Neutrons. Este algoritme és per a la formulació d'Ordenades Discretes i el Mètode de Volums Finits. En concret, s'han aplicat dos tipos de quadratures per a les Ordenades Discretes i dos esquemes d'interpolació per al Mètode de Volums Finits. Finalment, s'han aplicat estos mètodes a diversos tipos de reactors nuclears, incloent reactors comercials. S'han avaluat els valor de la constat de multiplicació i de la potència, perquè són variables fonamentals en els Anàlisis de Seguretat Nuclear. Endemés, s'ha realitzat un anàlisi de sensibilitat de diversos paràmetres com la malla i mètodes numèrics. En conclusió, es conseguix obtenir excel·lents resultats, tant en precisió com en cost computacional. / Bernal García, Á. (2018). Development of a 3D Modal Neutron Code with the Finite Volume Method for the Diffusion and Discrete Ordinates Transport Equations. Application to Nuclear Safety Analyses [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112422

Page generated in 0.035 seconds