Spelling suggestions: "subject:"finiteelement modeling"" "subject:"finitelement modeling""
171 |
Assessment of the Severity of Aortic Stenosis using Aortic Valve CoefficientPaul, Anup K. 09 September 2016 (has links)
No description available.
|
172 |
Load Rating of Flat Slab Bridges Without PlansSubedi, Shobha K. 23 August 2016 (has links)
No description available.
|
173 |
Viscoelastic FE Modeling of Asphalt Pavements and Its Application to U.S. 30 Perpetual PavementLiao, Yun January 2007 (has links)
No description available.
|
174 |
Elastic Registration of Medical Images Using Generic Dynamic Deformation ModelsMarami, Bahram 10 1900 (has links)
<p>This thesis presents a family of automatic elastic registration methods applicable to single and multimodal images of similar or dissimilar dimensions. These registration algorithms employ a generic dynamic linear elastic continuum mechanics model of the tissue deformation which is discretized using the finite element method. The dynamic deformation model provides spatial and temporal correlation between images acquired from different orientations at different times. First, a volumetric registration algorithm is presented which estimates the deformation field by balancing internal deformation forces of the elastic model against external forces derived from an intensity-based similarity measure between images. The registration is achieved by iteratively solving a reduced form of the dynamic deformation equations in response to image-derived nodal forces. A general approach for automatic deformable image registration is also presented in this thesis which deals with different registration problems within a unified framework irrespective of the image modality and dimension. Using the dynamic deformation model, the problem of deformable image registration is approached as a classical state estimation problem with various image similarity measures providing an observation model. With this formulation, single and multiple-modality, 3D-3D and 3D-2D image registration problems can all be treated within the same framework.The registration is achieved through a Kalman-like filtering process which incorporates information from the deformation model and an observation error computed from an intensity-based similarity measure. Correlation ratio, normalized correlation coefficient, mutual information, modality independent neighborhood descriptor and sum of squared differences between images are similarity/distance measures employed for single and multiple modality image registration in this thesis</p> / Doctor of Philosophy (PhD)
|
175 |
Automation and Expert System Framework for Coupled Shell-Solid Finite Element Modeling of Complex StructuresPalwankar, Manasi Prafulla 25 March 2022 (has links)
Finite Element (FE) analysis is a powerful numerical technique widely utilized to simulate the real-world response of complex engineering structures. With the advancements in adaptive optimization frameworks, multi-fidelity (coupled shell-solid) FE models are increasingly sought during the early design stages where a large design space is being explored. This is because multi-fidelity models have the potential to provide accurate solutions at a much lower computational cost. However, the time and effort required to create accurate and optimal multi-fidelity models with acceptable meshes for highly complex structures is still significant and is a major bottleneck in the FE modeling process. Additionally, there is a significant level of subjectivity involved in the decision-making about the multi-fidelity element topology due to a high dependence on the analyst's experience and expertise, which often leads to disagreements between analysts regarding the optimal modeling approach and heavy losses due to schedule delays. Moreover, this analyst-to-analyst variability can also result in significantly different final engineering designs. Thus, there is a greater need to accelerate the FE modeling process by automating the development of robust and adaptable multi-fidelity models as well as eliminating the subjectivity and art involved in the development of multi-fidelity models. This dissertation presents techniques and frameworks for accelerating the finite element modeling process of multi-fidelity models. A framework for the automated development of multi-fidelity models with adaptable 2-D/3-D topology using the parameterized full-fidelity and structural fidelity models is presented. Additionally, issues related to the automated meshing of highly complex assemblies is discussed and a strategic volume decomposition technique blueprint is proposed for achieving robust hexahedral meshes in complicated assembly models. A comparison of the full-solid, full-shell, and different multi-fidelity models of a highly complex stiffened thin-walled pressure vessel under external and internal tank pressure is presented. Results reveal that automation of multi-fidelity model generation in an integrated fashion including the geometry creation, meshing and post-processing can result in considerable reduction in cost and efforts. Secondly, the issue of analyst-to-analyst variability is addressed using a Decision Tree (DT) based Fuzzy Inference System (FIS) for recommending optimal 2D-3D element topology for a multi-fidelity model. Specifically, the FIS takes the structural geometry and desired accuracy as inputs (for a range of load cases) and infers the optimal 2D-3D topology distribution.
Once developed, the FIS can provide real-time optimal choices along with interpretability that provides confidence to the analyst regarding the modeling choices. The proposed techniques and frameworks can be generalized to more complex problems including non-linear finite element models and as well as adaptable mesh generation schemes. / Doctor of Philosophy / Structural analysis is the process of determining the response (mainly, deformation and stresses) of a structure under specified loads and external conditions. This is often performed using computational modeling of the structure to approximate its response in real-life conditions.
The Finite Element Method (FEM) is a powerful and widely used numerical technique utilized in engineering applications to evaluate the physical performance of structures in several engineering disciplines, including aerospace and ocean engineering. As optimum designs are increasing sought in industries, the need to develop computationally efficient models becomes necessary to explore a large design space. As such, optimal multi-fidelity models are preferred that utilize higher fidelity computational domain in the critical areas and a lower fidelity domain in less critical areas to provide an optimal trade-off between accuracy and efficiency. However, the development of such optimal models involves a high level of expertise in making a-priori and a-posteriori optimal modeling decisions. Such experience based variability between analysts is often a major cause of schedule delays and considerable differences in final engineering designs. A combination of automated model development and optimization along with an expert system that relieves the analyst of the need for experience and expertise in making software and theoretical assumptions for the model can result in a powerful and cost-effective computational modeling process that accelerates technological advancements. This dissertation proposes techniques for automating robust development of complex multi-fidelity models. Along with these techniques, a data-driven expert system framework is proposed that makes optimal multi-fidelity modeling choices based on the structural configuration and desired accuracy level.
|
176 |
Structural System Reliability with Application to Light Steel-Framed BuildingsChatterjee, Aritra 31 January 2017 (has links)
A general framework to design structural systems for a system-reliability goal is proposed. Component-based structural design proceeds on a member to member basis, insuring acceptable failure probabilities for every single structural member without explicitly assessing the overall system safety, whereas structural failure consequences are related to the whole system performance (the cost of a building or a bridge destroyed by an earthquake) rather than a single beam or column failure. Engineering intuition tells us that the system is safer than each individual component due to the likelihood of load redistribution and al- ternate load paths, however such conservatism cannot be guaranteed without an explicit system-level safety check. As a result, component-based structural designs can lead to both over-conservative components and a less-than-anticipated system reliability.
System performance depends on component properties as well as the load-sharing network, which can possess a wide range of behaviors varying from a dense redundant system with scope for load redistribution after failure initiates, to a weakest-link type network that fails as soon as the first member exceeds its capacity. The load-sharing network is characterized by its overall system reliability and the system-reliability sensitivity, which quantifies the change in system safety due to component reliability modifications. A general algorithm is proposed to calculate modified component reliabilities using the sensitivity vector for the load-sharing network. The modifications represent an improvement on the structural properties of more critical components (more capacity, better ductility), and provide savings on less important members which do not play a significant role.
The general methodology is applied to light steel-framed buildings under seismic loads. The building is modeled with non-linear spring elements representing its subsystems. The stochastic response of this model under seismic ground motions provides load-sharing, system reliability and sensitivity information, which are used to propose target diaphragm and shear wall reliability to meet a building reliability goal. Finally, diaphragm target reliability is used to propose modified component designs using stochastic simulations on geometric and materially non-linear finite-element models including every individual component.
This material is based upon work supported by the National Science Foundation under Grant Nos. 1301001 (Virginia Tech), 1301033 (University of Massachusetts, Amherst) and 1300484 (Johns Hopkins University). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily re ect the views of the National Science Foundation. The author is grateful to the industry partner, the American Iron and Steel Institute, for their cooperation. / Ph. D. / This research proposes methods to design engineering networks for acceptable overall safety. Some examples of engineering networks include electrical systems, transportation systems and infrastructural systems. When any such system is designed, the properties of every individual component (size, capacity etc.) are assigned according to cost and safety requirements. However, it is typically very difficult to reliably quantify the overall safety of the entire system, which is technically known as ‘system reliability’. As a result, there are limited options for engineers to adjust the individual component designs within a system to achieve a pre-specified ‘targeted’ system reliability . This dissertation proposes computational and statistical methods to achieve this.
The proposed methods are applied to a specific engineering system, namely a two story building subjected to ground shaking resulting from an earthquake. Computer models are developed for different scales of the building, beginning from the full building structure, then its individual floors and walls, and finally the individual components that make up each floor and wall. These models are verified with experimental results spanning all three scales. The verified models are then used to both compute the overall system reliability of the building subjected to earthquake ground shaking, as well as to modify its design component-by-component to achieve a targeted system reliability which is different from the system reliability of the original design.
The results indicate that the as-designed reliability of the building system is adequate, but this reliability results from features of the building that are not expected to provide additional safety. The research demonstrates means to obtain this additional safety by redesigning the core functional building components, without relying on the unexpected added safety from ‘non-structural’ components (such as partition walls inside a building). The methods developed herein can be applied to redesign the components of various engineering system networks such that a targeted overall system reliability can be satisfied, resulting in improved performance and life-safety, potentially even at reduced costs.
|
177 |
Performance of Columnar Reinforced Ground during Seismic ExcitationKamalzare, Soheil 31 January 2017 (has links)
Deep soil mixing to construct stiff columns is one of the methods used today to improve performance of loose ground and remediate liquefaction problems. This research adopts a numerical approach to study seismic performance of soil-cement columnar reinforcements in loose sandy profiles. Different constitutive models were investigated in order to find a model that can properly predict soil behavior during seismic excitations. These models included NorSand, Dafalias-Manzari, Plasticity Model for Sands (PM4Sand) and Pressure-Dependent-Multi-Yield-02 (PDMY02) model. They were employed to predict behavior of soils with different relative densities and under different confining pressures during monotonic and cyclic loading. PDMY02 was identified as the most suitable model to represent soil seismic behavior for the system studied herein.
The numerical aspects of the finite element approach were investigated to minimize the unintended numerical miscalculations. The focus was put on convergence tolerance, solver time-step, constraint definition, and, integration, material and Rayleigh damping. This resulted in forming a robust numerical configuration for 3-D nonlinear models that were later used for studying behavior of the reinforced grounds.
Nonlinear finite element models were developed to capture the seismic response of columnar reinforced ground during dynamic centrifuge testing. The models were calibrated with results from tests with unreinforced profiles. Thereafter, they were implemented to predict the response of two reinforced profiles during seismic excitations with different intensities and liquefaction triggering. Model predictions were compared with recordings and the possible effects from the reinforcements were discussed. Finally, parametric studies were performed to further evaluate the efficiency of the reinforcements with different extension depths and area replacement ratios.
The results collectively showed that the stiff elements, if constructed appropriately, can withstand seismic excitations with different intensities, and provide a firm base for overlying structures. However, the presence of the stiff elements within the loose ground resulted in stronger seismic intensities on the soil surface. The columns were not able to considerably reduce pore water pressure generation, nor prevent liquefaction triggering. The reinforced profiles, comparing to the free-field profiles, had larger settlements on the soil surface but smaller settlements on the columns. The results concluded that utilization of the columnar reinforcements requires great attention as these reinforcements may result in larger seismic intensities at the ground surface, while not considerably reducing the ground deformations. / Ph. D. / The mitigation of seismic damage potential of soft soil sites remains one of the leading challenges in geotechnical earthquake engineering. It is well-established that structures located on these sites generally experience more damage due to excessive ground deformation during earthquakes. Ground reinforcements are often required to improve these sites for support of overlying structures. A remediating approach is to construct stiff columns within these sites by mechanically mixing soil with cementitious materials. Cemented soil has higher strength, and thereby, undergoes less deformations. Moreover, stiff columns can provide resistance against movement of their surrounding soil providing a firm base for possible above foundations.
The primary focus of this research is to evaluate the effect of stiff column reinforcements on seismic behavior of loose ground. For this purpose, a numerical model was developed for the reinforced ground, and it was validated with results from experiments. The model was then used to study the performance of the reinforced ground during earthquake excitations with different intensities. The observed behavior was discussed and compared with findings from previous studies in literature. Finally, the numerical model was employed to evaluate efficiency of the reinforcements with different extension depths and occupied area.
The results collectively showed that stiff columns, if constructed appropriately, can withstand different shaking levels, and provide a firm support for overlying structures. However, they were not efficient in reducing deformation of the surrounding soils. The presence of the stiff elements within the loose ground resulted in stronger seismic intensities on the soil surface. The study concluded that utilization of stiff columns requires great attention and understanding of the reinforcing mechanism. These columns might increase seismic intensity below foundations, while not considerably reducing the ground deformations.
|
178 |
BIVENTRICULAR FINITE ELEMENT MODELING AND QUANTIFICATION OF 3D LANGRAGIAN STRAINS AND TORSION USING DENSE MRILiu, Zhanqiu 01 January 2016 (has links)
Statistical data suggests that increased use of evidence-based medical therapies has largely contributed to the decrease in American death rate caused by heart disease. And my studies are about two applications of magnetic resonance imaging (MRI) as a non-invasive approach in evidence-based health care research. In my first study, the achievement of a pulmonary valve replacement surgery was assessed on a patient with tetralogy of Fallot (TOF). In order to evaluate the remodeling of right ventricle, two biventricular finite element models were built up for pre-surgical images and post-surgical images. In my second study, 3D Lagrangian strains and torsion in the left ventricle of ten rats were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) images. Tools written in MATLAB were developed for 2D contouring, 3D modeling, strain and torsion computations, and statistical comparison across subjects.
|
179 |
Cohesive zone modeling for predicting interfacial delamination in microelectronic packagingKrieger, William E. R. 22 May 2014 (has links)
Multi-layered electronic packages increase in complexity with demands for functionality. Interfacial delamination remains a prominent failure mechanism due to mismatch of coefficient of thermal expansion (CTE). Numerous studies have investigated interfacial cracking in microelectronic packages using fracture mechanics, which requires knowledge of starter crack locations and crack propagation paths. Cohesive zone theory has been identified as an alternative method for modeling crack propagation and delamination without the need for a pre-existing crack. In a cohesive zone approach, traction forces between surfaces are related to the crack tip opening displacement and are governed by a traction-separation law. Unlike traditional fracture mechanics approaches, cohesive zone analyses can predict starter crack locations and directions or simulate complex geometries with more than one type of interface.
In a cohesive zone model, cohesive zone elements are placed along material interfaces. Parameters that define cohesive zone behavior must be experimentally determined to be able to predict delamination propagation in a microelectronic package. The objective of this work is to study delamination propagation in a copper/mold compound interface through cohesive zone modeling. Mold compound and copper samples are fabricated, and such samples are used in experiments such as four-point bend test and double cantilever beam test to obtain the cohesive zone model parameters for a range of mode mixity. The developed cohesive zone elements are then placed in a small-outline integrated circuit package model at the interface between an epoxy mold compound and a copper lead frame. The package is simulated to go through thermal profiles associated with the fabrication of the package, and the potential locations for delamination are determined. Design guidelines are developed to reduce mold compound/copper lead frame interfacial delamination.
|
180 |
Modélisation explicite de l’écaillage sous incendie du béton : approche thermo-hydro-mécanique avec des conditions aux limites évolutives / Explicit modeling of fire induced spalling of concrete : a thermo-hydro-mechanical approach with evolving boundary conditionsPhan, Minh Tuyen 07 November 2012 (has links)
Dans les dernières années, les incendies majeurs dans les tunnels ont causé des dommages importants. Dans ces conditions extrêmes (la température dépasse rapidement 1200 °C), l'augmentation de pression dans les pores, la dilatation thermique empêchée, l'incompatibilité de dilatation thermique entre la pâte du ciment et des granulats, la déshydratation ... sont des principaux mécanismes de dégradation qui peuvent être à l'origine de l'écaillage. L'écaillage progressif pendant l'incendie se manifeste par le détachement de la surface du béton par petits morceaux réduisant ainsi la section résistante et pouvant conduire à une rupture prématurée de la structure. Dans cette thèse, un modèle éléments finis THM est enrichi par un modèle d'écaillage progressif en proposant un critère d'écaillage de type détachement-flambement. La partie thermo-hydrique du modèle THM est basée sur l'approche à trois fluides en milieux partiellement saturés. Le comportement mécanique est développé dans le cadre d'une approche thermo-poro-mécanique couplée à l'endommagement et à la plasticité adoucissante. Cette modélisation de l'écaillage conduit à un problème avec frontière et conditions aux limites évolutives. Une stratégie de résolution numérique sans remaillage a été développée pour transférer les conditions aux limites THM simultanément avec l'occurrence de l'écaillage. L'implémentation du modèle dans le code aux éléments finis CESAR-LCPC a permis de procéder à différentes études paramétriques et à des confrontations avec des essais pour évaluer les capacités opérationnelles du modèle à décrire l'occurrence de l'écaillage et identifier les paramètres majeurs qui la contrôlent / In the recent years, there were major tunnels fires which caused fatalities and severe traffic restrictions. In such extreme conditions (temperatures exceeding 1200 °C for considerable time spans), pore pressure build-up, restrained thermal dilatation, cement paste to aggregate incompatibility, dehydration... are some main degradation mechanisms of concrete that may cause its thermal spalling. Progressive concrete spalling occurring during a fire presents as the breakdown of surface layers which flake into small pebble-like pieces. Then, the resistant section of the structure reduces which may lead to its premature failure.In this thesis, a THM finite element model is enriched with a detachment-buckling type criterion for progressive spalling. The thermo-hygral part of the THM model is based on the three fluid approach for partially saturated porous media. The mechanical part is derived within the framework of thermo-poro-mechanics coupled to damage and softening plasticity.The adopted modeling of spalling leads to a problem with evolving boundary and boundary conditions. A suitable numerical solution strategy without remeshing is then developed in order to transfer properly the THM boundary conditions simultaneously with spalling occurrence.The efficiency of the model THM-Spalling is illustrated by some numerical examples and by parametric studies. These studies identify the influence, on spalling, of size variation of spalling flakes, the average spalling velocity and uncertainties on different material parameters. Confrontation with experimental tests shows satisfactory capacity of the THM-Spalling model in reproducing qualitatively the occurrence of spalling
|
Page generated in 0.1257 seconds