Spelling suggestions: "subject:"interfacial delamination"" "subject:"lnterfacial delamination""
1 |
Interfacial fracture of micro thin film interconnects under monotonic and cyclic loadingZheng, Jiantao 18 November 2008 (has links)
The goal of this research was to develop new experimental techniques to quantitatively study the interfacial fracture of micro-contact thin film interconnects used in microelectronic applications under monotonic and cyclic loadings. The micro-contact spring is a new technology that is based on physical vapor deposited thin film cantilevers with a purposely-imposed stress gradient through the thickness of the film. These "springs" have the promise of being the solution to address near-term wafer level probing and long-term high-density chip-to-next level microelectronic packaging challenges, as outlined by the International Technology Roadmap for Semiconductors. The success of this technology is, in part, dependent on the ability to understand the failure mechanism under monotonic and cyclic loadings. This research proposes two experimental methods to understand the interfacial fracture under such monotonic and fatigue loading conditions. To understand interfacial fracture under monotonic loading, a fixtureless superlayer-based delamination test has been developed. Using stress-engineered Cr layer and a release layer with varying width, this test can be used to measure interfacial fracture toughness under a wide range of mode mixity. This test uses common IC fabrication techniques and overcomes the shortcomings of available methods. The developed test has been used to measure the interfacial fracture toughness for Ti/Si interface. It was found that for low mode mixity Ti/Si thin film interfaces, the fracture toughness approaches the work of adhesion which is essentially the Ti-Si bond energy for a given bond density. In addition to the monotonic decohesion test, a fixtureless fatigue test is developed to investigate the interfacial crack propagation. Using a ferromagnetic material deposited on the micro-contact spring, this test employs an external magnetic field to be able to drive the interfacial crack. Fatigue crack growth can be monitored by E-beam lithography patterned metal traces that are 10 to 40nm wide and 1 to a few µm in spacing. The crack initiation and propagation can be monitored through electrical resistance measurement. In the conducted experiments, it is seen that the interfacial delamination does not occur under fatigue loading, and that the micro-contact springs are robust against interfacial fracture for probing and packaging applications.
|
2 |
Cohesive zone modeling for predicting interfacial delamination in microelectronic packagingKrieger, William E. R. 22 May 2014 (has links)
Multi-layered electronic packages increase in complexity with demands for functionality. Interfacial delamination remains a prominent failure mechanism due to mismatch of coefficient of thermal expansion (CTE). Numerous studies have investigated interfacial cracking in microelectronic packages using fracture mechanics, which requires knowledge of starter crack locations and crack propagation paths. Cohesive zone theory has been identified as an alternative method for modeling crack propagation and delamination without the need for a pre-existing crack. In a cohesive zone approach, traction forces between surfaces are related to the crack tip opening displacement and are governed by a traction-separation law. Unlike traditional fracture mechanics approaches, cohesive zone analyses can predict starter crack locations and directions or simulate complex geometries with more than one type of interface.
In a cohesive zone model, cohesive zone elements are placed along material interfaces. Parameters that define cohesive zone behavior must be experimentally determined to be able to predict delamination propagation in a microelectronic package. The objective of this work is to study delamination propagation in a copper/mold compound interface through cohesive zone modeling. Mold compound and copper samples are fabricated, and such samples are used in experiments such as four-point bend test and double cantilever beam test to obtain the cohesive zone model parameters for a range of mode mixity. The developed cohesive zone elements are then placed in a small-outline integrated circuit package model at the interface between an epoxy mold compound and a copper lead frame. The package is simulated to go through thermal profiles associated with the fabrication of the package, and the potential locations for delamination are determined. Design guidelines are developed to reduce mold compound/copper lead frame interfacial delamination.
|
Page generated in 0.1522 seconds