• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 35
  • 20
  • 10
  • 6
  • Tagged with
  • 276
  • 276
  • 276
  • 103
  • 49
  • 38
  • 36
  • 35
  • 31
  • 30
  • 24
  • 24
  • 22
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values.

Pothapragada, Raja Mahesh 08 1900 (has links)
Nanoindentation is a widely used technique to measure the mechanical properties of films with thickness ranging from nanometers to micrometers. A much better understanding of the contact mechanics is obtained mostly through finite element modeling. The experiments were modeled using the software package Nano SP1 that is based on COSMOSM™ (Structural Research & Analysis Corp, www.cosmosm.com), a finite element code. The fundamental material properties affecting pile-up are the ratio of the effective modulus to yield stress Eeff/σ and the work hardening behavior. Two separate cases of work hardening rates were considered; one with no work hardening rate and other with a linear work hardening rate. Specifically, it is observed that pile up is large only when hf/hmax is close to one and degree of work hardening rate is small. It should also be noted that when hf/hmax < 0.7 very little pile-up is observed no matter what the work-hardening behavior of the material. When pile-up occurs the contact area is greater than that predicted by the experimental methods and both the hardness and modulus are overestimated. In this report the amount by which these properties are overestimated are studied and got to be around 22% approx. Bluntness of the tip often leads to the misinterpretation of the load-displacement data. Further analysis was done in order to find out the amount of deviation from the ideal tip due to tip bluntness. Radius of the tips were also calculated for cubecorner (41.35 nm) and conical indenter (986.05 nm).
22

Modeling the Effects of Turned Back Wingwalls for Semi-Integral Abutment Bridges

Jozwiak, Matthew T. 23 September 2019 (has links)
No description available.
23

Investigation of the Behavior of Open Cell Aluminum Foam

Veale, Patrick J 01 January 2010 (has links) (PDF)
The study investigates the behavior open cell aluminum foam in scenarios applicable to potential use in structural applications. Behavior was examined through mechanical testing, computer modeling and analytic expressions. Existing assumptions about the foam characteristics that define the elastic properties were expanded to include contributions of axial and shear deformations in addition to bending and were rewritten in terms of the axial and bending stiffness ratios of ligaments. Compressive and tensile tests were performed to gain a measure of the elastic properties of the foam as well as the behavior and failure mechanisms in both loading conditions. The materials used in testing were manufactured and supplied by ERG Duocel with defined porosities of 20 and 40 ppi and relative density of 6-8%. Fatigue tests were performed on open cell foam samples to determine the strain to fatigue life relationship for the material at high applied strain amplitudes. Finally, finite element models were created in ADINA for both ordered and random networks. The changes in elastic properties due to relative density, defined by ligament geometry, cell anisotropy and joint connectivity were measured for ordered networks, while irregular, random networks were used to investigate the forces developed within ligaments. Conclusions from this study provide insight on the behavior of open cell foam and promote further research in an effort to determine the viability of structural use of the material.
24

A Model for Prediction of Fracture Initiation in Finite Element Analysis of Bolted Steel Connections

Wurzelbacher, Kenneth P. January 2012 (has links)
No description available.
25

Development of Tools for Conceptual Design of a Wildland Firefighting UAV

Newton, Nicholas James 03 August 2023 (has links)
The current uses of unmanned aerial vehicles (UAVs) in wildland firefighting center around mapping, scouting, and firing operations. These operations and additional operations are often held back by lack of range and lift capacity of current UAV options. Software design tools were developed in this research to aid in designing a UAV for wildland firefighting. The tools help create a mission profile, estimate the mass of the UAV, select a motor and rotor, select a battery, and generate and analyze a finite element (FE) sector model. These tools leverage parametric analysis and studying existing hardware to create a design. The FE model is generated based on the mission profile, a motor and rotor, and battery as design parameters and a set of design variables. The tools developed for creating a mission profile, estimating mass, selecting a motor and rotor, and selecting a battery successfully aid the preliminary design of an octocopter, hexacopter, and quadcopter. The FE tool was designed around an octocopter's geometry, which leads to complications in generating FE models for a hexacopter or quadcopter. Recommendations were made for altering the FE tool to account for hexacopters and quadcopters. Other recommendations were made to support future work in creating an optimized design of a wildland firefighting UAV. / Master of Science / The use of multirotor UAVs in various industries is rapidly expanding. One industry that currently uses UAVs but is limited in their capabilities is wildland firefighting. Wildland firefighters use UAVs for scouting, mapping, and firing operations. Scouting includes finding road access to the fire, finding water sources, searching for spot fires, and many other applications. Mapping is typically done to understand the size of the fire. Firing operations are conducted to start small, controlled fires to remove fuel from the fires path. However, these operations as well as future applications of UAVs are often limited by the flight time and the lifting capabilities current UAV options offer. Tools were developed in this research to create a preliminary design of a UAV for wildland firefighting. The design parameters and variables of the UAV design are outlined throughout the tools. The tools allow for compiling mission requirements, selecting motors/rotors and a battery to use in the UAV, and a preliminary structural analysis of the UAV design. The preliminary structural analysis includes extracting stresses, strains, and displacements experienced through a simplified mission as well as the natural frequencies of the finite element sector model. The design of octocopters, hexacopters, and quadcopters were explored using the set of design tools. The tools were successfully in selecting components for each style of UAV and at the preliminary structural analysis of the octocopter design. However, the structural analysis was not able to be conducted for the hexacopter and quadcopter design due to geometric conditions in the finite element model.
26

Experimental and Modeling Studies of Clay/Polydicyclopentadiene Resin Nanocomposites

Yoonessi, Mitra 07 August 2004 (has links)
Hybrid organic-inorganic nanocomposites have received considerable attention during the last five years due to their unexpected properties. This work incorporated nanodispersed organically modified montmorillonite clay into polydicyclopentadiene resin matrices. Montmorillonite consists of 1 nm platelet sheets with a 2:1 structure, consisting of an alumina octahedral layer sandwiched between two silica tetrahedral layers. The relative weak forces between platelets allow small molecules like water, solvents and monomers as well as polymers, to enter into the interlayer spacings between the platelet sheets. In-situ polymerization of highly delaminated clay/dicyclopentadiene(DCPD) dispersions was used to prepare clay/polydicyclopentadiene (polyDCPD) nanocomposites. Highly delaminated composites were characterized using X-ray diffraction, X-ray scattering and high resolution TEM. Composites with 0.5-1 weight percent of clay had higher Tg values and flexural moduli. The flow properties of the organically-modified montmorillonite/DCPD liquid dispersions were examined using a co-rotating viscometer. The dispersions with clay concentrations higher than 0.5wt% clay in DCPD showed thixotropic flow behavior. Small angle neutron scattering (SANS) experiments were performed to obtain anisotropic scattering of highly delaminated clay in DCPD due to the orientation of clay platelets and tactoids in the shear field. No anisotropic scattering was observed. The reason for this unexpected result is not yet understood. Highly delaminated organically-modified clay composites were examined using small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS). The SANS data from 0.5, 1 and 2wt% clay/polyDCPD composites with 2 different types of clay were fitted to the stacked disk model. The average number of clay layers per tactoid was predicted by fitting the experimental data to the stacked disk model. Extensive high-resolution TEM analyses were performed on the same samples to obtain the average numbers of clay layers per tactoid. Two finite element models, one for the intercalated clay/polyDCPD nanocomposite and one for the exfoliated clay/polyDCPD nanocomposite, were developed. The effects of these different dispersion geometries for seven platelets in the polyDCPD matrix on the stress distributions were examined. The exfoliated platelet model showed reduced deformations and uniform stress distributions. The highest stress concentrations were found on the platelets? surfaces and where platelets were in close proximity.
27

Finite Element Modeling and Health Monitoring of the Ironton Russell Truss Bridge

Hamadani, Nabil 17 April 2009 (has links)
No description available.
28

CONDITION EVALUATION AND LOAD RATING OF STEEL STRINGER HIGHWAY BRIDGES USING FIELD CALIBRATED 2D-GRID AND 3D-FE MODELS

Turer, Ahmet January 2000 (has links)
No description available.
29

Route 2 rigid pavement project: Placement, testing and data analysis of instrumentation on slabs 1 thru 9

Bazeley, Christopher C. January 1995 (has links)
No description available.
30

An alternative method to predict friction in metal forming

Mahadeva, Shivantha January 1989 (has links)
No description available.

Page generated in 0.1136 seconds