• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of treated clays for extinguishing fires

Newton, Seaborn Alton 08 1900 (has links)
No description available.
2

A performance evaluation of low pressure carbon dioxide discharge test

Lee, Sung-Mo. January 2004 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: Deap-seated fire; flow calculation; maximum percent of agent in pipe; free efflux; carbon dioxide extinguishing system; low pressure; no efflux; surface fire; NFPA 12. Includes bibliographical references (p. 69-70).
3

Thermal decomposition products testing with 1,1,1,2,2,4,5,5,5 nonafluoro-4-trifluoromethyl pentan-3-one (C6 F-ketone) during fire extinguishing

Ditch, Benjamin D. January 2003 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: clean extinguishing agent; c₆f-ketone; novec 1230; thermal decomposition products; halon alternative. Includes bibliographical references.
4

Synthesis of bromochloromethane using phase transfer catalysis

Brooks, Lancelot L January 2011 (has links)
The synthesis of bromochloromethane (BCM) in a batch reactor, using phase transfer catalysis, was investigated. During the synthetic procedure, sodium bromide (100.0g, 0.97mol) along with an excess amount of dichloromethane (265.0g, 3.12 mol) was charged to a reactor containing benzyl triethylammonium chloride (13 mmol), dissolved in 50 ml of water. The bench scale reactions were all carried out in a Parr 4520 bench top pressure reactor coupled to a Parr 4841 temperature controller. The method produced a 50.0 percent yield of the product BCM after a reaction time of 12 to 13 hours. The main objective for this investigation was to optimize the abovementioned reaction with respect to yield and reactor throughput. Quantitative analysis of BCM was performed on a Focus Gas Chromatograph, fitted with a flame ionization detector, and a BP20 column (30m × 0,32mm ID × 0,25 mm). Delta software, version 5.0, was applied for data collection and processing. The injector and detector port were set at 250°C and 280°C, respectively. The oven temperature was set and held at 40°C for a period of 2 minutes, then gradually increased at a rate of 10°C/min to 130°C, with the final hold time set for 1 minute. An analytical method for the quantitative analysis of BCM was developed, optimized and validated. Validation of the analytical method commenced over a period of three days, and focussed the following validation parameters: Accuracy, precision, and ruggedness. Statistical evaluation of the results obtained for precision showed that the error between individual injections is less than 2 percent for each component. However, ANOVA analysis showed a significant difference between the mean response factors obtained in the three day period (p-value < 0.05). Thus we could conclude that the response factors had to be determined on each day before quantitatively analyzing samples. The accuracy of the analytical method was assessed by using the percent recovery method. Results obtained showed that a mean percent recovery of 100.18 percent was obtained for BCM, with the absolute bias = 0.0004, and the percent bias = 0.18 percent. Hence the 95 confidence intervals for the percent recovery and percent bias are given by: (Lz, Uz) = (100.56 percent percent 102.15 percent), 13 (LPB, UPB) = (0.56 percent, 2.15 percent), respectively. Since the 95 percent confidence interval for the percent recovery contains 100, or equivalently, the 95 percent confidence interval for percent bias contains 0, the assay method is considered accurate and validated for BCM. In the same manner the accuracy and percent recovery for DCM and DBM was evaluated. The method was found to be accurate and validated for DBM, however, slightly biased in determining the recovered amount of DCM. With the analytical method validated, the batch production process could be evaluated. A total of six process variables, namely reaction time, water amount, temperature, volume of the two phases, stirring rate, and catalyst concentration, were selected for the study. The effects of the individual variables were determined in the classical manner, by varying only the one of interest while keeping all others constant. The experimental data generated was fit to a quadratic response surface model. The profile plots that were obtained from this model allowed a visual representation of the effect of the six variables. The experimental results obtained showed that the reaction follows pseudo zero-order kinetics and that the rate of the reaction is directly proportional to the concentration of the catalyst. The reaction obeys the Arrhenius equation, and the relatively high activation energy of 87kJ.mol -1 signifies that the rate constant is strongly dependent on the temperature of the reaction. The results also showed that the formation of BCM is favoured by an increase in the reaction temperature, catalyst concentration, and a high organic: aqueous phase ratio. Thus the synthesis of BCM using phase transfer catalyst could be optimised, to obtain a 100 percent yield BCM, by increasing both the reaction temperature to 105°C, and the concentration of the phase transfer catalyst -benzyl triethylammonium chloride - to 5.36 mol percent. The reaction time was also reduced to 6 hours.
5

Thermal Decomposition Products Testing With 1,1,1,2,2,4,5,5,5 nonafluoro-4-trifluoromethyl pentan-3-one (C6 F-ketone) During Fire Extinguishing

Ditch, Benjamin D. 06 January 2003 (has links)
The thermal decomposition products (TDP) generated during fire suppression with 1,1,1,2,2,4,5,5,5 nonafluoro-4-trifluoromethyl pentan-3-one were studied using wet chemistry and FTIR. Small-scale testing was conducted in a 1.28-m3 (45-ft3) enclosure. The effects of fire size, agent discharge time, and agent concentration on TDP are reported. A comparison of the two methods is presented. In terms of magnitude and generation trends, the TDPs were found to be comparable to other in-kind halon alternatives.
6

Transport and dispersion of fire extinguishing agents downstream from clutter elements of aircraft engine nacelles

Unknown Date (has links)
The combination of highly turbulent airflow, flammable fluids, and numerous ignition sources makes aircraft engine nacelles a difficult fire zone to protect. Better understanding of nacelle air flow and how it influences the spread of fires and fire extinguishing agents is needed to improve the efficiency of fire suppression. The first objective was to establish a CFD model for a flow field test section to analyze the transport and dispersion of fire extinguishing agents in the presence of various clutter elements. To validate the use of the CFD model, the simulation results of the CFD model were compared to the experimental data and they show an agreement with the experimental data. The second objective was to present parametric studies to show the effects of the coflow speed, turbulence intensity and agent droplet size on the transport and dispersion of the agent particles downstream from the clutter elements. / by Khaled Zbeeb. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
7

Ekotoxikologické posouzení bodových zdrojů znečištění v ekosystému / Ecotoxicological Assessment of Point Pollution in the Ecosystem

Doležalová, Šárka January 2018 (has links)
The main subject of this dissertation is the ecotoxicological evaluation of significant point sources of pollution. These include wildfires and wide fires of factories and also industrial and urban wastewater treatment plants. The local application of pyrolytic product obtained from sewage sludge as the point source of pollution was also included in the thesis. Tests in aquatic and contact arrangement with using both water and soil organisms for ecotoxicity evaluation of selected matrices were chosen. Crustaceans Thamnocephalus platyurus, Daphnia magna Straus and sea bacteria Vibrio fischeri were selected as representative organisms of water animals. Duckweed Lemna minor was chosen as water plant. Further collembola Folsomia candida and earthworm Eisenia fetida were chosen as representatives of soil animals. Finally onion Allium cepa L. and mustard Sinapis alba are representatives of terrestrial plants. Submitted thesis deals about analytes of interest, their properties and ways of distribution to the environments. The output of the thesis is a comprehensive assessment of the effects of selected point sources of pollution on aquatic and terrestrial ecosystems organisms and ecotoxicological risks assessment. The fire extinguishing agents have been proven to be the most stressful substances for all selecteded organisms.
8

A Performance Evaluation of Low Pressure Carbon Dioxide Discharge Test

Lee, Sung-Mo 30 April 2004 (has links)
For gaseous fire extinguishing systems, the maximum percent of agent in pipe, i.e., pipe volume vs. agent liquid volume should be determined for proper system design and performance by confirming the maximum length of pipe run in which their flow calculation methods can predict the discharge pressures and agent concentration. It is the purpose of this paper to determine the ability and limitations of the NFPA 12 flow calculation methodology to identify the maximum percent of agent in pipe by conducting full scale low-pressure CO2 system discharge tests. A total of twenty low-pressure CO2 system discharge tests were conducted under different conditions. If all the measured pressures at the three node points of pipe runs and the measured CO2 concentrations in the test enclosures did not deviate from the predicted values of computerized flow calculations by more than ¡¾10 percent, the tests were judged to be acceptable. In the test results, the low-pressure CO2 system with a pipe run exceeding 492 ft (150 m) was not likely to achieve the concentration required for fire extinguishment within the determined discharge time although the pipe network was installed in compliance with the calculations based on the pressure drop equation in NFPA 12.

Page generated in 0.1427 seconds