Spelling suggestions: "subject:"iis"" "subject:"iris""
101 |
Gravitational Lensing as a Tool on Galactic and Cosmological ScalesTessore, Nicolas <1986> 21 December 2015 (has links)
This work considers the reconstruction of strong gravitational lenses from their observed effects on the light distribution of background sources.
After reviewing the formalism of gravitational lensing and the most common and relevant lens models, new analytical results on the elliptical power law lens are presented, including new expressions for the deflection, potential, shear and magnification, which naturally lead to a fast numerical scheme for practical calculation.
The main part of the thesis investigates lens reconstruction with extended sources by means of the forward reconstruction method, in which the lenses and sources are given by parametric models.
The numerical realities of the problem make it necessary to find targeted optimisations for the forward method, in order to make it feasible for general applications to modern, high resolution images.
The result of these optimisations is presented in the \textsc{Lensed} algorithm.
Subsequently, a number of tests for general forward reconstruction methods are created to decouple the influence of sourced from lens reconstructions, in order to objectively demonstrate the constraining power of the reconstruction.
The final chapters on lens reconstruction contain two sample applications of the forward method.
One is the analysis of images from a strong lensing survey.
Such surveys today contain $\sim 100$ strong lenses, and much larger sample sizes are expected in the future, making it necessary to quickly and reliably analyse catalogues of lenses with a fixed model.
The second application deals with the opposite situation of a single observation that is to be confronted with different lens models, where the forward method allows for natural model-building.
This is demonstrated using an example reconstruction of the ``Cosmic Horseshoe''.
An appendix presents an independent work on the use of weak gravitational lensing to investigate theories of modified gravity which exhibit screening in the non-linear regime of structure formation.
|
102 |
Simulations for Gravitational Lensing of 21 cm Radiation at EoR and Post-EoR RedshiftsRomeo, Alessandro <1987> 21 December 2015 (has links)
21 cm cosmology opens an observational window to previously unexplored cosmological epochs such as the Epoch of Reionization (EoR), the Cosmic Dawn and the Dark Ages using powerful radio interferometers such as the planned Square Kilometer Array (SKA). Among all the other applications which can potentially improve the understanding of standard cosmology, we study the promising opportunity given by measuring the weak gravitational lensing sourced by 21 cm radiation. We performed this study in two different cosmological epochs, at a typical EoR redshift and successively at a post-EoR redshift. We will show how the lensing signal can be reconstructed using a three dimensional optimal quadratic lensing estimator in Fourier space, using single frequency band or combining multiple frequency band measurements. To this purpose, we implemented a simulation pipeline capable of dealing with issues that can not be treated analytically. Considering the current SKA plans, we studied the performance of the quadratic estimator at typical EoR redshifts, for different survey strategies and comparing two thermal noise models for the SKA-Low array. The simulation we performed takes into account the beam of the telescope and the discreteness of visibility measurements. We found that an SKA-Low interferometer should obtain high-fidelity images of the underlying mass distribution in its phase 1 only if several bands are stacked together, covering a redshift range that goes from z=7 to z=11.5. The SKA-Low phase 2, modeled in order to improve the sensitivity of the instrument by almost an order of magnitude, should be capable of providing images with good quality even when the signal is detected within a single frequency band. Considering also the serious effect that foregrounds could have on this detections, we discussed the limits of these results and also the possibility provided by these models of measuring an accurate lensing power spectrum.
|
103 |
Non-thermal emission in High Frequency Peaked blazars towards the Square Kilometer Array eraLico, Rocco <1984> 21 December 2015 (has links)
In this thesis work we will explore and discuss the properties of the gamma-ray sources included in the first Fermi-LAT catalog of sources above 10 GeV (1FHL), by considering both blazars and the non negligible fraction of still unassociated gamma-ray sources (UGS, 13%).
We perform a statistical analysis of a complete sample of hard gamma-ray sources, included in the 1FHL catalog, mostly composed of HSP blazars, and we present new VLBI observations of the faintest members of the sample.
The new VLBI data, complemented by an extensive search of the archives for brighter sources, are essential to gather a sample as large as possible for the assessment of the significance of the correlation between radio and very high energy (E>100 GeV) emission bands.
After the characterization of the statistical properties of HSP blazars and UGS, we use a complementary approach, by focusing on an intensive multi-frequency observing VLBI and gamma-ray campaign carried out for one of the most remarkable and closest HSP blazar Markarian 421.
|
104 |
COSMIC-LAB: Unexpected Results from High-resolution Spectra of AGB Stars in Globular ClustersLapenna, Emilio <1986> 17 December 2015 (has links)
We have used high-resolution spectra, acquired with UVES@ESO-VLT, to determine the chemical abundances of different samples of AGB and RGB stars in 4 Galactic globular clusters, namely 47Tuc, NGC3201, M22 and M62.
For almost all the analyzed AGB stars we found a clear discrepancy between the iron abundance measured from neutral lines and that obtained from single ionized lines,
while this discrepancy is not obtained for the RGB samples observed in the same clusters and analyzed with the same procedure. Such a behavior exactly corresponds to what expected in the case of Non-Local Thermodynamical Equilibrium (NLTE) in the star atmosphere.
These results have a huge impact on the proper determination of GC chemistry.
In fact, one of the most intriguing consequences is that, at odds with previous claims, no iron spread is found in NGC3201 and M22 if the iron abundance is obtained from ionized lines only.
|
105 |
On the Luminous and Dark Matter Distribution in Early-Type GalaxiesPosti, Lorenzo <1988> 17 December 2015 (has links)
The way mass is distributed in galaxies plays a major role in shaping their evolution across cosmic time. The galaxy's total mass is usually determined by tracing the motion of stars in its potential, which can be probed observationally by measuring stellar spectra at different distances from the galactic centre, whose kinematics is used to constrain dynamical models. A class of such models, commonly used to accurately determine the distribution of luminous and dark matter in galaxies, is that of equilibrium models. In this Thesis, a novel approach to the design of equilibrium dynamical models, in which the distribution function is an analytic function of the action integrals, is presented. Axisymmetric and rotating models are used to explain observations of a sample of nearby early-type galaxies in the Calar Alto Legacy Integral Field Area survey. Photometric and spectroscopic data for round and flattened galaxies are well fitted by the models, which are then used to get the galaxies' total mass distribution and orbital anisotropy. The time evolution of massive early-type galaxies is also investigated with numerical models. Their structural properties (mass, size, velocity dispersion) are observed to evolve, on average, with redshift. In particular, they appear to be significantly more compact at higher redshift, at fixed stellar mass, so it is interesting to investigate what drives such evolution. This Thesis focuses on the role played by dark-matter haloes: their mass-size and mass-velocity dispersion correlations evolve similarly to the analogous correlations of ellipticals; at fixed halo mass, the haloes are more compact at higher redshift, similarly to massive galaxies; a simple model, in which all the galaxy's size and velocity-dispersion evolution is due to the cosmological evolution of the underlying halo population, reproduces the observed size and velocity-dispersion of massive compact early-type galaxies up to redshift of about 2.
|
106 |
Kinematics of local and high-z galaxies through 3D modeling of emission-line datacubesDi Teodoro, Enrico Maria <1985> 17 December 2015 (has links)
The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing.
In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk.
We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago.
In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.
|
107 |
Black Hole and Galaxy Growth over Cosmic Time: the Chandra COSMOS Legacy SurveyMarchesi, Stefano <1988> January 1900 (has links)
The study of supermassive black hole (SMBH) accretion during their phase of activity (hence becoming active galactic nuclei, AGN), and its relation to the host-galaxy growth, requires large datasets of AGN, including a significant fraction of obscured sources.
X-ray data are strategic in AGN selection, because at X-ray energies the contamination from non-active galaxies is far less significant than in optical/infrared surveys, and the selection of obscured AGN, including also a fraction of heavily obscured AGN, is much more effective.
In this thesis, I present the results of the Chandra COSMOS Legacy survey, a 4.6 Ms X-ray survey covering the equatorial COSMOS area. The COSMOS Legacy depth (flux limit f=2x10^(-16) erg/s/cm^(-2) in the 0.5-2 keV band) is significantly better than that of other X-ray surveys on similar area, and represents the path for surveys with future facilities, like Athena and X-ray Surveyor.
The final Chandra COSMOS Legacy catalog contains 4016 point-like sources, 97% of which with redshift. 65% of the sources are optically obscured and potentially caught in the phase of main BH growth.
We used the sample of 174 Chandra COSMOS Legacy at z>3 to place constraints on the BH formation scenario. We found a significant disagreement between our space density and the predictions of a physical model of AGN activation through major-merger. This suggests that in our luminosity range the BH triggering through secular accretion is likely preferred to a major-merger triggering scenario.
Thanks to its large statistics, the Chandra COSMOS Legacy dataset, combined with the other multiwavelength COSMOS catalogs, will be used to answer questions related to a large number of astrophysical topics, with particular focus on the SMBH accretion in different luminosity and redshift regimes.
|
108 |
Genetická variabilita mikrosatelitů u různých plemen psůTománková, Jana January 2009 (has links)
No description available.
|
109 |
Studies of the atmospheric muon flux with the ANTARES detectorBazzotti, Marco <1980> 14 May 2009 (has links)
The thesis main topic is the determination of the vertical component of the atmospheric muon flux as a function of the sea depth at the ANTARES site. ANTARES is a Cherenkov neutrino telescope placed at 2500m depth in the Mediterranean Sea at 40 km from the southern cost of France. In order to retrieve back the physical flux from the experimental data a deconvolution algorithm has been perform which takes into consideration the trigger inefficiensies and the reconstruction errors on the zenith angle. The obtained results are in good agreement with other ANTARES indipendent analysis.
|
110 |
Measurement of top quark pairs production cross-section in the semi-leptonic channel with the ATLAS experimentDi Sipio, Riccardo <1981> 04 May 2010 (has links)
This thesis is about three major aspects of the identification of top quarks. First comes the understanding of their production mechanism, their decay channels and how to translate theoretical formulae into programs that can simulate such physical processes using Monte Carlo techniques. In particular, the author has been involved in the introduction of the POWHEG generator in the framework of the ATLAS experiment. POWHEG is now fully used as the benchmark program for the simulation of ttbar pairs production and decay, along with MC@NLO and AcerMC: this will be shown in chapter one. The second chapter illustrates the ATLAS detectors and its sub-units, such as calorimeters and muon chambers. It is very important to evaluate their efficiency in order to fully understand what happens during the passage of radiation through the detector and to use this knowledge in the calculation of final quantities such as the ttbar production cross section. The last part of this thesis concerns the evaluation of this quantity deploying the so-called "golden channel" of ttbar decays, yielding one energetic charged lepton, four particle jets and a relevant quantity of missing transverse energy due to the neutrino. The most important systematic errors arising from the various part of the calculation are studied in detail. Jet energy scale, trigger efficiency, Monte Carlo models, reconstruction algorithms and luminosity measurement are examples of what can contribute to the uncertainty about the cross-section.
|
Page generated in 0.0508 seconds