• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 24
  • 9
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 123
  • 123
  • 25
  • 25
  • 24
  • 23
  • 22
  • 19
  • 17
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

AN INVESTIGATION INTO THE NURSERY EFFECT OF SELECT REEF FISHES ALONG THE SOUTHERN FLORIDA COAST

Unknown Date (has links)
The nursery effect is a process where juvenile fish utilize coastal habitats to help them survive before moving to their adult habitat. This process establishes an important link between marine ecosystems. This study examines the nursery effect and nursery habitat utilization in the Indian River Lagoon and Florida Bay systems, and the coral reefs adjacent to them. Quantitative and spatial techniques were utilized to identify patterns of presence and abundance and the size structure of select fish species. Spatial analyses were also used to investigate distribution patterns. Findings from this study suggest that several species utilize to a high degree the Indian River Lagoon and Florida Bay as nurseries. Furthermore, the abundance of adults on coral reefs is strongly connected to the presence of nurseries. This study has implications in fisheries management such as locating where juveniles of species develop. With such knowledge, better management plans could be implemented to ensure healthy fish stocks. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
52

Negative effects of sedimentation on lithophilic spawning fish embryos and methods to potentially mitigate these effects

Alexander J Gatch (8045354) 29 November 2019 (has links)
<p>Natural and constructed rocky reef habitats constitute important areas for lithophilic spawning fishes and their embryonic and larval offspring. Interstitial spaces created by the structure of rocky reefs create micro-environments where incubating embryos and juvenile fishes are potentially protected from predators. However, if interstitial spaces are filled or blocked by sediment deposition or biofouling, the reef structure may lose the protective benefits for embryonic and larval fish survival. Lake whitefish (<i>Coregonus clupeaformis</i>) and walleye (<i>Sander vitreus</i>) are native Great Lake lithophilic broadcast spawning fish that use rocky spawning habitats that are vulnerable to degradation caused by deposition of suspended sediments. To restore degraded rocky reef habitat, common practices include addition of material to existing reef structures or construction of new reefs, but both of these practices can be costly and time intensive. In this study, we measured the effect of different types and amounts of sediment cover on hatching success of walleye eggs and assessed if differences in female walleye (female length and egg size) account for tolerance to sediment cover. Additionally, we explored an alternative approach for reef restoration, custodial maintenance, in which we created two novel devices to potentially clean rocky reef habitat. We carried out two laboratory experiments in 2018 and 2019 to test the effect of sediment cover on hatching success of walleye eggs (2018) and to test how female identity and female length or egg size may interact with sediment cover to influence hatching success (2019). We exposed walleye eggs to instantaneous sediment cover (0 mm – 7mm) of either sand (course) or silt (fine) sediments from fertilization until day 15 of incubation. Our results indicated that walleye eggs were sensitive to silt cover (71% mortality- 2 mm cover silt) but not sand (47% mortality- 7mm cover sand). While there was an indication that hatching success was marginally related to female length and egg size, we concluded that sediment cover seemed to have similar effects on eggs, regardless of female length or egg size. The susceptibility of walleye eggs to mortality caused by sediment cover underscores the need for non-degraded spawning habitat. Our two cleaning devices used either propulsion or pressurized water jets to clean sediments from the rocky structure as they were towed behind a small vessel (i.e., did not require the use of SCUBA divers). We used devices to clean two natural rocky reefs in Saginaw Bay, Lake Huron in 2018 and 2019. We measured relative hardness before and after use of devices on cleaned and uncleaned study plots to determine effectiveness of devices. In addition, we measured egg deposition by fall (lake whitefish) and spring (walleye) lithophilic spawners on study plots to determine potential differences in fish usage of cleaned and uncleaned areas. We found that cleaning devices contributed to changes in relative hardness among study plots. Egg deposition was also variable on study plots but in general, egg deposition was consistently highest on treatment plots cleaned by our device that used propulsion. The practicality of cleaning devices was seemingly related to the magnitude of degradation of rocky reefs, nevertheless, our results show that the use of these or similar devices may potentially increase egg deposition by creating areas of higher-quality habitat. While more testing is necessary to fully understand the potential of our reef cleaning devices, this two-year study suggests that these devices may be capable of restoring degraded rocky spawning habitat which could potentially minimize the negative effects associated with sediment degradation on lithophilic spawning fish.</p>
53

Anglers' Attitudes Toward the Fisheries Management Policies of the Logan and Blacksmith Fork Rivers, Utah

Riley, Larry Edwin 01 May 1987 (has links)
In the summer of 1986, anglers along three sections of the Logan and Blacksmith Fork Rivers, Utah were surveyed as to their attitudes toward fish stocking, habitat improvement, and wild trout management policies. Information concerning socio-demographic characteristics and ang ling values were ascertained as well. Data were cross tabulated to determine which of the variab les influence anglers' attitudes toward spec ifi c fisheries manage ment policies and the type of angling opportunity provided. The analysis of data s how e d differences between the types of anglers using the three sample sections. The data showed that variables such as preferred angling method, preferred water type, number of fishing trips taken this year, age, importance of keeping fish, and whether an angler emphasizes catching a large number of fish or large fish, can influence anglers ' attitudes toward fisheries management policies. The ungrouped data showed that the anglers sampled preferred: to catch brown or cutthroat trout; fish stocking to be limited to waters which have little or no natural reproduction or production; larger (14 inch) catchable size trout to be stocked even if it means a smaller number of fish will be stocked; the State to emphasize habitat improvement right along with fish stocking in their management plan; and the continuation of the policy to provide a limited amount of 11 Wild trout., regulated waters for angling variety.
54

Re-evaluation of north-temperate reservoir food web interactions and their assessment

Dillon, Rebecca January 2020 (has links)
No description available.
55

Evaluating Population Dynamics, Movement, and Spawning Success of Paddlefish Polyodon Spathula at Sam D. Hamilton Noxubee National Wildlife Refuge

Gilliland, Chelsea Rae 10 August 2018 (has links)
An abundant Paddlefish Polyodon spathula population exists in a 0.8 ha pool below a water control structure at Sam D. Hamilton Noxubee National Wildlife Refuge, Mississippi. Managers were concerned that regulated flows from the structure were causing an ecological trap if Paddlefish were being attracted from the larger river downstream during the spawning period, but conditions were not suitable to facilitate reproduction. Between February 2016 to April 2018, 117 Paddlefish were identified and daily abundance was estimated between 18 and 75 fish. Telemetry study of 59 fish suggests a mixed population structure where some remain in the pool year-round and other emigrate seasonally, cued by rising spring discharge and water temperature. Reproduction was not documented which suggests a critical component needed for spawning may be missing, at least during this study. Therefore, given the need to remove Paddlefish from the pool, translocation and flow releases may be effective management strategies.
56

Spatial and Temporal Comparisons of Gopher Rockfish (Sebastes carnatus) Life History and Condition in South Central California

Meyers-Cherry, Natasha Leigh 01 December 2014 (has links) (PDF)
Recent studies have shown environmental factors influence life history traits in fishes. Understanding intraspecific variability of life history characteristics and condition is necessary to determine local fisheries management strategies. Gopher rockfish, Sebastes carnatus, comprise 50% of the estimated shallow nearshore recreational rockfish catch in California, yet insufficient local data exist regarding life history traits and condition of this species. Our study locally defines growth parameters (maximum size and age), size (age) at reproductive maturity, and condition (hepatosomatic indices) for gopher rockfish in south central California. The growth parameter values of gopher rockfish from our study are similar to previously published research. However, our data also indicate that the current local gopher rockfish stock in south central California reaches reproductive maturity at a larger size and an older age when compared to gopher rockfish sampled throughout central California (primarily in Monterey) between 1977-1982. Furthermore, we examined spatial and temporal differences in life history information, within and outside of two south central California Marine Protected Areas (MPAs) established in 2007, between two time periods. Our data show that the size and longevity of fish has increased after the establishment of MPAs.
57

Bottom-Up Processes and Consumer Effects in Saginaw Bay, Lake Huron

Justin R Meyer (17592513) 11 December 2023 (has links)
<p dir="ltr">Nutrients are essential to support fish production in aquatic systems but are detrimental in excess. To that end, the relationship between nutrient loading and fish biomass is hypothesized to be unimodal. In the mid-20<sup>th</sup> century, numerous aquatic systems in North America and Europe were receiving excessive nutrients and were considered heavily degraded as a result. Since then, nutrient abatement programs have resulted in increased fish biomass in many systems throughout the two continents. However, few systems have complete records of fish biomass and nutrient loading to offer support for both sides of the unimodal fishery production curve. In Saginaw Bay, Lake Huron, total phosphorus estimates are available back to when nutrient abatement programs were first implemented in the system in the 1970s. In addition, a long-term fall bottom trawling dataset from an annual monitoring survey conducted by the Michigan Department of Natural Resources has indexed fish biomass and composition since 1970. In Chapter 2, we utilize these datasets to analyze trends in system-wide fish biomass as well as fish community trends since 1970 in response to continued nutrient abatement. We found increasing fish biomass from 1970 until the early 2000s concurrent with total phosphorus declines. However, more recently, we documented declines in system-wide fish biomass with reduced nutrient loads. We found planktivorous and benthivorous fish species displayed similar initial increases in biomass followed by more recent declines in biomass. However, we determined current total phosphorus loading was still sufficient to support piscivore biomass near peak levels.</p><p dir="ltr">While nutrients in Saginaw Bay are lower than at times in the past, the system is still highly productive. One consequence of productive systems is increased susceptibility to hypoxia, or low dissolved oxygen that can result from organic matter decomposition. Past studies have documented hypoxic conditions in Saginaw Bay in the summer and over-winter period. However, past studies have been limited in scale and have not estimated the extent or duration of hypoxia throughout the Saginaw Bay system. With climate change expected to increase the occurrence of hypoxia throughout the Laurentian Great Lakes, knowledge of dissolved oxygen dynamics in the system is becoming progressively more important. In Chapter 3, we used an array of high frequency data loggers deployed throughout inner Saginaw Bay over two summer and over-winter periods to document dissolved oxygen conditions. We also analyzed a time series dataset of bottom oxygen and environmental parameter measurements to determine the conditions that contribute to low dissolved oxygen in the bay. Further, through stable isotope analysis we investigated whether hypoxic conditions had an effect on the carbon and nitrogen (δ<sup>13</sup>C and δ<sup>15</sup>N) isotopic signatures of chironomid larvae, an important basal prey item in Saginaw Bay. We found instances of seasonal hypolimnetic hypoxia in the summers of 2021 and 2022 but normoxic conditions throughout the over-winter periods following each summer. We also determined bottom water and wind speed to be the most reliable predictors of low dissolved oxygen since 2011, indicating the temporary stratification that can occur during warm, calm summer periods likely precedes the development of hypoxic conditions in Saginaw Bay. Chironomid δ<sup>13</sup>C and δ<sup>15</sup>N values were highly variable, but some individuals displayed very low values, indicative of hypoxia exposure.</p>
58

Managing Muskellunge in the New River, Virginia: Effective Regulations and Predation on Smallmouth Bass

Doss, Sasha Stevely 21 April 2017 (has links)
Potential predation between fishes of recreational interest has incited many bitter conflicts between angler groups. Large predators, such as esocids, are often at the center of these conflicts because of their capacity to alter fish populations. Such a conflict certainly exists between the Muskellunge Esox masquinongy and Smallmouth Bass Micropterus dolomieu fisheries of the New River, Virginia. Following the institution of a 42-in minimum-length limit (MLL) on Muskellunge, bass anglers feared that increased Muskellunge abundance might be negatively affecting Smallmouth Bass via increased predation. In order to ascertain the impacts of the 42-in MLL, I estimated the demographics, abundance, and food habits of Muskellunge combined with bioenergetics modeling to assess changes (i) in the quality of the Muskellunge fishery and (ii) in Muskellunge predation on Smallmouth Bass. Additionally, given the likelihood of future regulations to incite similar concerns from bass anglers, I modeled alternative length-limit regulations (iii) to assess their potential to improve fishery quality, thereby laying the groundwork for managers to address angler concerns before they arise. I found substantial increases in population size structure and in average adult density of Muskellunge since the institution of the 42-in MLL, but bioenergetics modeling did not indicate a notable increase in the consumption of Smallmouth Bass. I also found that high MLLs (e.g., 48-in) were likely to promote the largest increases in trophy production of Muskellunge compared to low MLLs or protected-slot limits (PSLs). This study suggests that the current Muskellunge population likely plays a small role in shaping Smallmouth Bass population dynamics and production in the New River; and lays the groundwork for predicting how the impact of Muskellunge on Smallmouth Bass might change under alternative regulations. / Master of Science
59

The effects of life history strategy and uncertainty on a probability-based approach to managing the risk of overfishing

Susko, Emily Clare 17 April 2012 (has links)
Recent U.S. legislation applies a precautionary approach to setting catch regulations in federal fisheries management. A transparent approach to complying with federal guidelines involves calculating the catch recommendation that corresponds to a specified probability, P*, of exceeding the "true" overfishing limit (OFL) located within an estimated distribution. The P* methodology aims to manage the risk of overfishing explicitly, but choice of P* alone does not provide sufficient information on all of the risks associated with a control rule—both the probability of overfishing and the severity of overfishing. Rather, the ramifications of P* choices depend on the amount of uncertainty in the stock assessment and on the life history of the species in question. To evaluate these effects on the risks associated with P* rules, my study simulated fishing three example species under three levels of uncertainty. Trends identified among example species were consistent with predictions from life history. Periodic strategists, which have highly variable recruitment, experienced probabilities of overfishing which exceeded P* and which increased in time. Equilibrium strategists showed more predictable risks of overfishing but may have less capacity to recover from depleted biomass levels. Differences in the size of the OFL distribution—representing differences in levels of uncertainty—led to mixed results depending on whether the distribution was biased or whether uncertainty was fully characterized. Lastly, because OFL distributions are themselves estimates and subject to uncertainty in their shape and size, lower P* values closer to the tails of the estimated distribution produced more variable resulting risks. / Master of Science
60

Environmental management of Atlantic cod (Gadus morhua) and turbot (Scophthalamus maximus) : implications of noise, light and substrate

Sierra Flores, Rogelio January 2014 (has links)
During the last decades marine aquaculture has steadily expanded and diversified to include a wider range of commercial species. Despite the intense effort towards understanding the biological requirements of farmed species, several issues remain to be addressed. Mariculture success is restricted by a number of production bottlenecks including limited seed supply, caused mainly through a combination of compromised productivity in broodstock paired with high mortalities during the early life stages. Productivity and survival success is often dependent on the successful recreation of natural environmental conditions. While in a commercial setting a concerted effort is generally made to simulate key environmental stimuli there remains a lack of understanding of the significance of many potential signals. The overarching aim of this thesis was to investigate the effects of some of the overlooked environmental stimuli on fish performance in enclosed facilities and where possible relate this to the natural setting from which the species have been removed. The studies contained in this text are focused on the effects of anthropogenic noise, light spectral composition and substrate on the performance of broodstock and juvenile development of two valuable commercial marine species Atlantic cod (Gadus morhua) and turbot (Scophthalmus maximus). The aim of Chapter 3 was to test if artificial sound can act as a stressor in Atlantic cod and thereafter to examine if chronic sound disturbances can compromise broodstock spawning performance in land-based facilities. Results showed that anthropogenic noises in a land-based marine farm are within the auditory thresholds of cod and other fish species. Juvenile cod exposed to 10 min of artificial noise (100-1,000 Hz) from 10 to 20 dB 1 re µPa above background sound levels presented a typical acute stress response with a 4 fold elevation of plasma cortisol levels within 20 min, with a return to basal levels after 40 min, while the intensity of the stress response (in terms of amplitude and return to normal levels) appeared to be correlated to the noise level applied. When a similar artificial noise of 35 dB 1 re µPa above background sound level was applied to a broodstock population daily on a random schedule during the spawning season, it significantly impacted on reproductive performances in comparison to a control undisturbed population with notably a reduction in fertilisation rate that correlated with increased egg cortisol contents. Overall, these studies confirmed, for the first time, that artificial noise mimicking anthropogenic sounds generated in marine land-based facilities trigger a typical acute stress response if a similar sound exposure is then applied in a chronic manner it resulted in reduced broodstock spawning performances. Overall this work provides novel evidence on the potential of anthropogenic noise to act as stressor in fish. The possible implications for both captive and wild stock are discussed. In chapter 4 the effects of light spectrum and tank background colour on Atlantic cod and turbot larval performance from hatch until the end of metamorphosis were investigated. In both species larvae exposed to shorter wavelengths (blue and green spectrums) showed significantly enhanced growth in terms of standard length, myotome height, eye diameter and condition factor in comparison to larvae exposed to longer wavelengths (red). Larvae performances in the colour background experiment differed between species. Atlantic cod larvae reared in a red tank background displayed the best growth and survival, while larvae in blue tank background had a significant positive effect on final survival rate. In contrast, turbot larvae survival rates were the highest in the red tank background colour with the lowest growth parameters, while larvae in the blue tank background displayed the best growth. In both species, white tank background colour resulted in the lowest final survival rate. These results highlight the biological relevance of light spectrum and background colour in marine larvae performance and survival, demonstrating the importance of considering the light composition of the light units used in the hatcheries for larval rearing. Subsequently in chapter 5 the effects of light spectrum in juvenile turbot growth, appetite, stress response and skin pigmentation were investigated. Two sets of experiments were performed with post-metamorphosed (1 g) and on-growing (100 g) turbot. Results demonstrated that short wavelength treatments had a significant positive effect on growth parameters (total length and wet weight), food intake and feeding response. Light treatments caused a positive correlation between plasma glucose and cortisol levels with significant differences between the short and long wavelength treatments. Skin pigmentation was affected by the light treatments, showing a relationship between wavelength and brightness (negative) and darkness (positive). Blue light treatment resulted in brighter and lighter skin colouration, while red light had the opposite effect: darkening of the skin. Overall these results confirm that turbot juveniles performance is enhanced by exposing them to a similar photic environment than the one from the natural ecological niche. Light spectrum intervenes in skin pigmentation and the possible mechanisms behind the variations are discussed. In general chapter 5 provides background knowledge of the possible implications of light spectrum in fish juveniles performance and possible commercial applications. The final two experimental chapters turned focus back on the optimisation of broodstock environmental management and subsequent effects on their productivity. In Chapter 6 the importance of crepuscular light simulation was investigated in Atlantic cod broodstock spawning performance. No significant impact could be observed in terms of egg production and quality in association with dawn/dusk simulation compared to abrupt lights on/off. This suggests, at least for Atlantic cod, that crepuscular light simulation is not a key factor affecting spawning performance during the spawning window. The possible implications of twilight on gamete quality prior ovulation are discussed. In Chapter 7 the effect of a “breeding nest” containing a substrate (i.e. sand) in turbot broodstock spawning performance was investigated. Behavioural observation recorded active occupancy of the nests with the suggestion of social structuring as specific individuals (females) occupied the nest preferentially. However no fertilised, naturally released eggs were collected from the overflow during the spawning seasons. This would suggest that the presence of a nest is not enough to induce natural spawning behaviour in turbot in itself however the elective occupancy suggests that nests and/or their substrate was a physical enrichment that was valued by the fish which should be explored further. Overall the studies contained in this thesis highlight further the importance of considering noise and light as crucial environmental factors in marine aquaculture. Results from the different chapters offer a possible application within the enclosed facilities that might contribute to the success of the industry. Present findings contribute towards the understanding of the effects of environmental signals in fish and provide further insight to guide further lines of research on the involvement of light spectrum on fish physiology.

Page generated in 0.1099 seconds