• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 12
  • 12
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase control in the synthesis of yttrium oxide nano and micro-particles by flame spray pyrolysis

Mukundan, Mallika 15 May 2009 (has links)
The project synthesizes phase pure Yttria particles using flame spray pyrolysis, and to experimentally determines the effect of various process parameters like residence time, adiabatic flame temperature and precursor droplet size on the phase of Yttria particles generated. Further, through experimentation and based on the understanding of the process, conditions that produce pure monoclinic Y2O3 particles were found. An ultrasonic atomization set-up was used to introduce precursor droplets (aqueous solution of yttrium nitrate hex hydrate) into the flame. A hydrogen-oxygen diffusion flame was used to realize the high temperature aerosol synthesis. The particles were collected on filters and analyzed using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Individual process parameters (flame temperature, residence time, precursor concentration, precursor droplet size) were varied in continuous trials, keeping the rest of the parameters constant. The effect of the varied parameter on the phase of the product Yttria particles was then analyzed. Pre-flame heating was undertaken using a nozzle heater at variable power. Precursor solution concentrations of 0.026 mol/L, 0.26 mol/L, and 0.65 mol/L were used. Residence time was varied by means of burner diameter (9.5 mm and 1.6 mm ID). Large precursor droplets were removed by means of an inertial impactor. The higher flame temperatures and precursor heating favor the formation of monoclinic yttrium oxide. The fraction of the cubic phase is closely related to the particle diameter. All particles larger than a critical size were of the cubic phase. Phase pure monoclinic yttrium oxide particles were successfully synthesized. The end conditions included a precursor concentration of 0.65 mol/L, a pure hydrogen-oxygen flame and a 1.6 mm burner. The precursor droplets entrained fuel gas was passed through a round jet impactor and preheated at full power (130 VA). The particles synthesized were in the size range of 0.350 to 1.7 µm.
2

Phase control in the synthesis of yttrium oxide nano and micro-particles by flame spray pyrolysis

Mukundan, Mallika 15 May 2009 (has links)
The project synthesizes phase pure Yttria particles using flame spray pyrolysis, and to experimentally determines the effect of various process parameters like residence time, adiabatic flame temperature and precursor droplet size on the phase of Yttria particles generated. Further, through experimentation and based on the understanding of the process, conditions that produce pure monoclinic Y2O3 particles were found. An ultrasonic atomization set-up was used to introduce precursor droplets (aqueous solution of yttrium nitrate hex hydrate) into the flame. A hydrogen-oxygen diffusion flame was used to realize the high temperature aerosol synthesis. The particles were collected on filters and analyzed using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Individual process parameters (flame temperature, residence time, precursor concentration, precursor droplet size) were varied in continuous trials, keeping the rest of the parameters constant. The effect of the varied parameter on the phase of the product Yttria particles was then analyzed. Pre-flame heating was undertaken using a nozzle heater at variable power. Precursor solution concentrations of 0.026 mol/L, 0.26 mol/L, and 0.65 mol/L were used. Residence time was varied by means of burner diameter (9.5 mm and 1.6 mm ID). Large precursor droplets were removed by means of an inertial impactor. The higher flame temperatures and precursor heating favor the formation of monoclinic yttrium oxide. The fraction of the cubic phase is closely related to the particle diameter. All particles larger than a critical size were of the cubic phase. Phase pure monoclinic yttrium oxide particles were successfully synthesized. The end conditions included a precursor concentration of 0.65 mol/L, a pure hydrogen-oxygen flame and a 1.6 mm burner. The precursor droplets entrained fuel gas was passed through a round jet impactor and preheated at full power (130 VA). The particles synthesized were in the size range of 0.350 to 1.7 µm.
3

THE EFFECTS OF FLAME TEMPERATURE, PARTICLE SIZE AND EUROPIUM DOPING CONCENTRATION ON THE PROPERTIES OF Y2O3:EU PARTICLES FORMED IN A FLAME AEROSOL PROCESS

Yim, Hoon 2009 May 1900 (has links)
Y2O3:Eu particles are phosphors that have found wide applications. Flamesynthesized Y2O3:Eu particles may have either the cubic or the monoclinic structure. The effects of particle size and Eu doping concentration on crystal structure and the surface elemental composition of the flame-synthesized Y2O3:Eu particles had not been previously reported. In this study, a flame aerosol process was used to generate polydisperse Y2O3:Eu particle. H2 was used as the fuel gas, with either air or O2 gas as the oxidizer. The precursor was aqueous solutions of the metal nitrates, atomized using a 1.7-MHz ultrasonic atomizer. The product particles were analyzed by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), fluorescence spectrophotometer, and inductively coupled plasma mass spectrometer (ICP-MS). The Y2O3:Eu particles generated in H2/O2 flames were spherical and fully dense, with diameters in the range of 10~3000 nm. In particle samples with lower Eu doping concentrations, a critical particle diameter was found, whose value increased with increasing Eu doping concentration. Particles well below the critical diameter had the monoclinic structure; those well above the critical diameter had the cubic structure. At sufficiently high Eu doping concentrations, all Y2O3:Eu generated in H2/O2 flames had the monoclinic structure. On the other hand, all particles generated in the H2/air flames had the cubic structure. For the Y2O3:Eu particles generated in H2/O2 flames, XPS results showed that the surface Eu concentration was several times higher than the doping concentration. For Y2O3:Eu particles generated in H2/air flames, the surface Eu concentration was equal to the doping concentration. For both types of particles, the photoluminescence intensity reached a maximum corresponding to a surface Eu concentration 40~50%. The photoluminescence intensity then decreased rapidly with higher Eu doping concentration. The effect of particle size and Eu doping concentration on crystal structure may be explained by the interplay between surface energy and polymorphism. A mechanism for this surface enrichment phenomenon was proposed based on the binary Eu2O3-Y2O3 phase diagram.
4

Spark ignition and flame propagation in sprays

Neophytou, Alexandre January 2011 (has links)
No description available.
5

Wear behavior of flame sprayed nanostructured titania coatings

Pourjavad, Navid Unknown Date
No description available.
6

Synthesis of Highly Durable and High Performing Various Metal-Doped CaO-based Nano-sorbents to Capture CO2 at High Temperatures

Koirala, Rajesh 19 April 2012 (has links)
No description available.
7

Designing functional magnetic nanoparticles with flame spray pyrolysis for bio-applications

Li, Dan, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Magnetic nanoparticles (MNPs) hold great promise in the fields of biology and medicine. The synthesis of functional MNPs with precisely controlled crystallographic, physicochemical, and magnetic properties on a large scale still remains the challenge today. This thesis reports the exploration of liquid-fed flame spray pyrolysis (FSP) in the synthesis of functional MNPs, their surface modifications, and potential bio-applications. Superparamagnetic and ferromagnetic maghemite (γ-Fe2O3) nanoparticles, and silica-coated maghemite (SiO2/γ-Fe2O3) nanocomposites were synthesised using FSP. The size of γ-Fe2O3 was controllable from 6 to 53 nm, with morphology evolving from a disordered near-spherical shape to fully ordered 2-D hexagonal/octagonal platelet. The saturation magnetisation (Ms) increased from 21 to 74 emu/g with increasing particle size, up to 13 nm when Ms approached the bulk γ-Fe2O3 characteristics. In the case of SiO2/γ-Fe2O3, three distinct morphologies, namely the single segregated γ-Fe2O3 core- SiO2 shell, transitional mixed morphologies, and multi γ-Fe2O3 cores embedded in submicron SiO2 shell, were obtained. The core size, composite size, and morphology of γ- Fe2O3 were tunable by varying %SiO2 loading and the use of a quartz tube enclosure during flame synthesis. The magnetic behaviour correlated well with the crystal microstructure. Following the core particle design, protein adsorption-desorption behaviour on FSP-madeMNPs was studied. Bovine serum albumin (BSA) adsorption was found to follow the Langmuir isotherm, with high binding capacities (150−348 mg BSA/g particle) and fast association constants. Electrostatically governed BSA orientations were proposed for different particle-buffer systems. The adsorbed BSA was effectively recovered by pH-shift using K2HPO4. Subsequently, terminal amine, aldehyde, carboxylic, epoxy, mercapto and maleimide functionality were anchored onto the FSP-made γ-Fe2O3 particles. These versatile functional groups led to conjugation of active trypsin. The immobilised trypsin exhibited superior durability with >60% residual activity after one week, and excellent reusability for >5 cycles. The trypsin-conjugated MNPs are promising carriers in proteomics, demonstrating good substrate specificity with equivalent or better sequence coverage compared to free trypsin in insulin and BSA digestion. In another application, a refined silanisation procedure simultaneously reduced γ-Fe2O3 to Fe3O4, and generated thiol enriched surface for matrix metalloproteinase-2 (MMP-2) conjugation. The highly active MMP-2-conjugated MNPs could potentially enhance the interstitial transport of macromolecule/nanoparticles in drug delivery.
8

Designing functional magnetic nanoparticles with flame spray pyrolysis for bio-applications

Li, Dan, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Magnetic nanoparticles (MNPs) hold great promise in the fields of biology and medicine. The synthesis of functional MNPs with precisely controlled crystallographic, physicochemical, and magnetic properties on a large scale still remains the challenge today. This thesis reports the exploration of liquid-fed flame spray pyrolysis (FSP) in the synthesis of functional MNPs, their surface modifications, and potential bio-applications. Superparamagnetic and ferromagnetic maghemite (γ-Fe2O3) nanoparticles, and silica-coated maghemite (SiO2/γ-Fe2O3) nanocomposites were synthesised using FSP. The size of γ-Fe2O3 was controllable from 6 to 53 nm, with morphology evolving from a disordered near-spherical shape to fully ordered 2-D hexagonal/octagonal platelet. The saturation magnetisation (Ms) increased from 21 to 74 emu/g with increasing particle size, up to 13 nm when Ms approached the bulk γ-Fe2O3 characteristics. In the case of SiO2/γ-Fe2O3, three distinct morphologies, namely the single segregated γ-Fe2O3 core- SiO2 shell, transitional mixed morphologies, and multi γ-Fe2O3 cores embedded in submicron SiO2 shell, were obtained. The core size, composite size, and morphology of γ- Fe2O3 were tunable by varying %SiO2 loading and the use of a quartz tube enclosure during flame synthesis. The magnetic behaviour correlated well with the crystal microstructure. Following the core particle design, protein adsorption-desorption behaviour on FSP-madeMNPs was studied. Bovine serum albumin (BSA) adsorption was found to follow the Langmuir isotherm, with high binding capacities (150−348 mg BSA/g particle) and fast association constants. Electrostatically governed BSA orientations were proposed for different particle-buffer systems. The adsorbed BSA was effectively recovered by pH-shift using K2HPO4. Subsequently, terminal amine, aldehyde, carboxylic, epoxy, mercapto and maleimide functionality were anchored onto the FSP-made γ-Fe2O3 particles. These versatile functional groups led to conjugation of active trypsin. The immobilised trypsin exhibited superior durability with >60% residual activity after one week, and excellent reusability for >5 cycles. The trypsin-conjugated MNPs are promising carriers in proteomics, demonstrating good substrate specificity with equivalent or better sequence coverage compared to free trypsin in insulin and BSA digestion. In another application, a refined silanisation procedure simultaneously reduced γ-Fe2O3 to Fe3O4, and generated thiol enriched surface for matrix metalloproteinase-2 (MMP-2) conjugation. The highly active MMP-2-conjugated MNPs could potentially enhance the interstitial transport of macromolecule/nanoparticles in drug delivery.
9

Nano-Catalyst Synthesized by Flame Spray Pyrolysis (FSP) for Visible Light Photocatalysis

Inturi, Siva Nagi Reddy January 2017 (has links)
No description available.
10

Synthèse du carbonate de diméthyle par carboxylation du méthanol catalysée par des oxydes mixtes de cérium et de zirconium : relation structure–activité, étude mécanistique et cinétique / Direct carboxylation of methanol into dimethyl carbonate over ceria/zirconia catalysts : structure-activity relationship, mechanistic and kinetic study

Daniel, Cécile 27 January 2017 (has links)
Le carbonate de diméthyle (DMC) est utilisé comme intermédiaire en chimie des polymères. Actuellement, la production industrielle du DMC met en jeu un procédé polluant et dangereux. En revanche, la synthèse du DMC à partir de méthanol et de CO2 est un procédé « vert ». Cependant, la thermodynamique de la réaction est très défavorable, se traduisant par une conversion inférieure à 1%. L'objectif de cette thèse est de développer et d'étudier des catalyseurs très actifs qui, couplés à un réacteur membranaire, permettraient d'augmenter le rendement et l'activité. Ce manuscrit couvre plusieurs aspects : i) une étude de criblage de catalyseurs, ii) une étude de type structure-activité sur des séries de catalyseurs, basée sur des caractérisations structurales, texturales et de surface, iii) une étude mécanistique et iv) une étude cinétique. Un protocole de mesure d'activité adapté aux faibles conversions est développé. Le criblage catalytique met en évidence l'activité des solutions solides de cérine-zircone (CZ). Les CZ préparées par pyrolyse de flamme sont un ordre de grandeur plus actives que les CZ préparées par coprécipitation. De façon surprenante, il n'est pas possible a priori de distinguer des catalyseurs très actifs et peu actifs à partir de leurs caractéristiques structurales et texturales. Cependant, on observe que l'activité est corrélée à la densité et à la nature des espèces de surfaces méthoxides et carbonates. Le mécanisme réactionnel de l'état de l'art est affiné grâce à des mesures d'échanges isotopiques et de DRIFT. L'étude cinétique intègre des corrections thermodynamiques de l'équilibre de phases du binaire MeOH-CO2 qui constitue un liquide expansé / Dimethylcarbonate (DMC) is used in polymer synthesis as well as a fuel additive and solvent. The current industrial DMC production is a polluting and hazardous process. On the other hand, the direct carboxylation of methanol with CO2 is a green route to DMC. However, this reaction is highly limited by thermodynamics, limiting the conversion to less than 1%. The integration of a catalyst in a catalytic membrane reactor for water and DMC removal, would shift the equilibrium conversion thereby improving the DMC yield. The aim of this thesis is to develop and study highly active catalysts for DMC synthesis. This manuscript covers: (i) catalyst screening (ii) a structure-activity relationship study (iii) a mechanistic approach and (iv) a kinetic study. A protocol to measure the activity at low conversion has been developed. Catalyst screening evidenced solid solutions of ceria/zirconia (CZ) as the most active and selective. Flame sprayed pyrolysis ceria/zirconia are one order of magnitude more active than coprecipitated CZ. Interestingly, structural and textural features like crystalline and porous structure were similar regardless of the activity. Nevertheless, the activity could be correlated to the nature and the density of the methoxides and carbonates surface species. The mechanism was refined by isotopic exchange and DRIFT experiments. A kinetic study was performed in a batch reactor that integrated the physical equilibria of the gas-expanded reacting mixture

Page generated in 0.0593 seconds