• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 16
  • 5
  • 2
  • Tagged with
  • 86
  • 86
  • 26
  • 18
  • 18
  • 17
  • 17
  • 16
  • 15
  • 15
  • 14
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Investigation of high strain rate behavior of metallic specimens using electromagnetic inductive loading

Morales, Santiago Adolfo 20 September 2011 (has links)
Aerospace Engineering / The aim of this thesis is to explore the high strain rate behavior of metallic specimens using electromagnetic inductive loading as the means to inflict the required high strain rate deformation on laboratory scale specimens, allowing for controlled, repeatable experiments to be performed. Three separate experiments were designed and performed, using helical and spiral coils as the sources of radial and unidirectional loading. The first experiment evaluated the effect of applying a polymer coating on 30.5 mm diameter, Al 6061- O tube samples, in two lengths, 18 and 36 mm. The expanding tube experiment was used to apply a radial loading on the specimens and record the event. Several optical techniques were then used to evaluate the behavior of the samples. Coatings of polyurea and polycarbonate were used. It was observed that the polycarbonate coating seemed to have a more profound effect on the behavior of the metal, by applying a larger restraining pressure on the tube surface during the expansion process, and thereby modifying the stress state of the specimen. The second experiment looked to design an experimental arrangement to test the plane strain, high strain rate behavior of Al 6061-O tubes of different lengths. A 112 mm long solenoid was designed and manufactured, and testing was performed on 30.5 mm diameter Al 6061-O tubes in lengths of 50, 70 and 90 mm. It was observed that the coil behaved similar to shorter ones at low voltages and that the longer the specimen used, the more its deformation path approached a plane strain condition. Finally, a third experiment was performed to develop an experiment to accelerate a plate to high linear velocities, as a means to evaluate the use of a flat spiral coil as the driver for future experiments based upon electromagnetic inductive loading. A prototype coil was manufactured and installed into a converted expanding tube experimental setup. Three samples were tested in several sizes, and materials: aluminum and steel. Speeds in the range of 45 to 251 m/s were obtained, validating the apparatus as a viable method to provide a unidirectional loading. / text
72

Nocturnal cooling : Study of heat transfer from a flat-plate solar collector

Johansson, Helena January 2008 (has links)
This thesis investigates the possibility of using an unglazed flat-plate solar collector as a cooling radiator. The solar collector will be connected to the condenser of a heat pump and used as cooler during nighttime. Daytime the solar collector will be connected to the evaporator of the heat pump and used as heat source. The two widely differing fields of application make special demands on the solar collector. The task is given by the heat pump manufacturer Thermia and the main objective is to find out whether a solar collector should be used as a cooler or not. The performance of the solar collector under varying environmental conditions is investigated using COMSOL Multiphysics 3.3. Only the cooling properties are investigated here. The performance of the solar collector as a heat exchanger is estimated using the effectiveness-NTU method, and the solar collector is found to be a good heat exchanger at low wind speeds. The heat transfer coefficients of the convection and radiation are determined for varying temperature and wind speeds. The convective heat transfer coefficient is lowered by tubes above the absorber plate and for a high convective heat transfer rate the solar collector surface should be smooth. For a high radiative heat transfer rate the surface needs to have a high emissivity. The cooling rate is higher from a warm surface than from a cold and since no temperature change of the heat carrier is necessary the solar collector should be kept at a high temperature. To increase the cooling rate alterations need to be made to the solar collector that makes its heating performance deteriorate. A solar collector that can be used for cooling is not an efficient solar collector.
73

Perfect Gas Navier-stokes Solutions Of Hypersonic Boundary Layer And Compression Corner Flows

Aziz, Saduman 01 September 2005 (has links) (PDF)
The purpose of this thesis is to perform numerical solutions of hypersonic, high temperature, perfect gas flows over various geometries. Three dimensional, thin layer, compressible, Navier-Stokes equations are solved. An upwind finite difference approach with Lower Upper-Alternating Direction Implicit (LU-ADI) decomposition is used. Solutions of laminar, hypersonic, high temperature, perfect gas flows over flat plate and compression corners (qw=5&deg / , 10&deg / , 14&deg / , 15&deg / , 16&deg / , 18&deg / and 24&deg / ) with eight different free-stream and wall conditions are presented and discussed. During the analysis, air viscosity is calculated from the Sutherland formula up to 1000&deg / K, for the temperature range between 1000 &ordm / K and 5000 &ordm / K a curve fit to the estimations of Svehla is applied. The effects of Tw/T0 on heat transfer rates, surface pressure distributions and boundary layer characteristics are studied. The effects of corner angle (&amp / #952 / w) on strong shock wave/boundary layer interactions with extended separated regions are investigated. The obtained results are compared with the available experimental data, computational results, and theory.
74

Effects Of Extrapolation Boundary Conditions On Subsonic Mems Flows Over A Flat Plate

Turgut, Ozhan Hulusi 01 January 2006 (has links) (PDF)
In this research, subsonic rarefied flows over a flat-plate at constant pressure are investigated using the direct simulation Monte Carlo (DSMC) technique. An infinitely thin plate (either finite or semi-infinite) with zero angle of attack is considered. Flows with a Mach number of 0.102 and 0.4 and a Reynolds number varying between 0.063 and 246 are considered covering most of the transitional regime between the free-molecule and the continuum limits. A two-dimensional DSMC code of G.A. Bird is used to simulate these flows, and the code is modified to examine the effects of various inflow and outflow boundary conditions. It is observed that simulations of the subsonic rarefied flows are sensitive to the applied boundary conditions. Several extrapolation techniques are considered for the evaluation of the flow properties at the inflow and outflow boundaries. Among various alternatives, four techniques are considered in which the solutions are found to be relatively less sensitive. In addition to the commonly used extrapolation techniques, in which the flow properties are taken from the neighboring boundary cells of the domain, a newly developed extrapolation scheme, based on tracking streamlines, is applied to the outflow boundaries, and the best results are obtained using the new extrapolation technique together with the Neumann boundary conditions. With the new technique, the flow is not distorted even when the computational domain is small. Simulations are performed for various freestream conditions and computational domain configurations, and excellent agreement is obtained with the available experimental data.
75

Estudo da aeroelasticidade em problema acoplado fluido-estrutura da semi-asa simplificada para veículo aéreo não tripulado – VANT.

PEÑA, Diego Paes de Andrade. 27 April 2018 (has links)
Submitted by Kilvya Braga (kilvyabraga@hotmail.com) on 2018-04-27T11:35:02Z No. of bitstreams: 1 DIEGO PAES DE ANDRADE PEÑA - DISSERTAÇÃO (PPGEM) 2016.pdf: 5093848 bytes, checksum: c6e79e54502ec5a0ff9ff5b410ffd362 (MD5) / Made available in DSpace on 2018-04-27T11:35:02Z (GMT). No. of bitstreams: 1 DIEGO PAES DE ANDRADE PEÑA - DISSERTAÇÃO (PPGEM) 2016.pdf: 5093848 bytes, checksum: c6e79e54502ec5a0ff9ff5b410ffd362 (MD5) Previous issue date: 2016-09-02 / CNPq / A aeroelasticidade é o campo da ciência que estuda a correlação entre as forças aerodinâmicas, elásticas e de inércia. Tal ciência é de grande importância no campo aeronáutico uma vez que as estruturas alares são flexíveis, devem suportar os esforços aerodinâmicos e serem rígidas o suficiente para garantir que esteja livre de todos os problemas aeroelásticos característicos (divergência, eficiência de controle, flutter e buffeting) dentro da faixa operacional de velocidades desenvolvida pela aeronave. Realizou-se uma análise modal da estrutura a fim de se conhecer os modos naturais de vibração e as respectivas frequências naturais. Para tal, utilizou-se o ANSYS Structural e o método dos elementos finitos, além de um estudo de malha para verificar a convergência dos resultados. Estudou-se também a influência da posição do lastro na ponta da placa plana, que causa a diminuição da segunda frequência natural. Além disso, realizou-se uma análise bidimensional de um volume de controle do tipo C-Grid, uma vez que o tamanho do volume de controle em uma análise aerodinâmica computacional é um fator extremamente importante. Com um volume de controle grande, tem se mais elementos na malha, caso o mesmo seja pequeno, as condições de contorno juntamente com os tamanhos dos elementos podem interferir nos resultados dos campos de velocidade e pressão em torno da estrutura. Nesse contexto, utilizou-se do software ANSYS Fluent para a simulação aerodinâmica da placa plana inclinada e obtenção dos coeficientes aerodinâmicos de sustentação e arrasto CL e CD. Os resultados foram comparados com resultados experimentais em túnel de vento de Goudeseune (SELIG; ROBERT; WILLIAMSON, 2011). Através do cálculo do Grid Convergence Index (GCI) e da comparação dos resultados numéricos com os dados experimentais constatou-se a convergência e conseguiu-se determinar um tamanho de volume de controle com erro baixo e aceitável. A análise fluido-estrutura acoplada de duas vias foi realizada com o ANSYS Structural para analisar a dinâmica estrutural através do método dos elementos finitos e o ANSYS CFX para resolver o campo do escoamento mediante método dos volumes finitos. Obtiveram-se o comportamento oscilatório da estrutura, além do coeficiente de amortecimento e tensões de von Mises. Analisando o comportamento transiente da dinâmica estrutural mediante um fluxo aerodinâmico constante (velocidade fixa). As simulações representaram bem o fenômeno, já que com o aumento da velocidade, o escoamento induz maior amortecimento à estrutura quando comparado com baixas velocidades. / The aeroelasticity is the field of science that studies the relationship between the aerodynamic elastic and inertia forces. Such knowledge is of great importance in the aviation field since the wing structures are flexible, must withstand the aerodynamic loads and be rigid enough to ensure that it is free from all aeroelastic problems like divergence, control efficiency, flutter and buffeting within the operating speed range. We carried out a modal analysis of the structure in order to know the natural vibration modes and natural frequencies. To this end, we used the ANSYS Structural with finite element method, a mesh study to verify the convergence of the results. It is also studied the influence of the slender body position of the tip of the flat plate, which causes the decrease of the second natural frequency. Furthermore, there was a twodimensional analysis of a volume control type C-Grid, since the control volume aerodynamic size in a computational analysis is an extremely important factor. A large volume of control has more elements in the mesh if it is small, the boundary conditions together with the sizes of elements may affect the results of the velocity field and pressure around the structure. In this context, we used the ANSYS FLUENT for the aerodynamic simulation of the inclined flat plate, and obtaining the aerodynamic support, and drag coefficients CL and CD. The results were compared with experimental results of Goudeseune wind tunnel (SELIG; ROBERT; WILLIAMSON, 2011). By calculating the Grid Convergence Index (GCI) and comparing the numerical results with experimental data found the convergence and managed to determine a control volume size with low and acceptable error. The fluid-structure coupled two-way analysis was performed using ANSYS Structural to analyze the structural dynamics through the finite element method and ANSYS CFX to resolve the flow field by the finite volume method. It was possible to obtain the oscillatory behavior of the structure, besides the damping coefficient and von Mises stresses. Analyzing the transient behavior of structural dynamics by a constant aerodynamic flow (fixed speed), the simulations represented the phenomenon as well, since with the increase in speed, the flow induces cushioning structure as compared to low speed
76

Design of a conveyance device based on a digital actuators array and structured plate / Conception d’un système de déplacement basé sur un réseau d’actionneurs numériques et d’un plateau structuré

Xu, Jing 17 May 2016 (has links)
Les actionneurs numériques sont composés d'une partie mobile pouvant se déplacer entre des positions discrètes précisément connues et répétables. Contrairement aux actionneurs analogiques classiques, le pilotage d'actionneurs numériques est réalisé très simplement à l'aide d'une commande impulsionnelle et en boucle ouverte. De ce fait, aucun capteur n'est nécessaire ce qui facilite leur intégration dans des systèmes hôtes. La qualité de fabrication de ces actionneurs est cependant primordiale car une éventuelle erreur ne peut pas être corrigée par la commande. Les travaux présentés porteront sur un réseau composé de 25 actionneurs numériques disposant chacun de quatre positions discrètes avec un plateau glissant. L'application visée est la réalisation d'un système de convoyage planaire dans laquelle les actionneurs permettent de déplacer un plateau selon les deux directions du plan. Les résultats de la simulation sont comparés avec les résultats expérimentaux. En suite, un réseau composé de quatre actionneurs numériques avec un plateau structuré est étudié. La conception du réseau d'actionneurs puis la stratégie de pilotage permettant de réaliser le déplacement du plateau structuré seront tout d'abord présentées. Un prototype de réseau d'actionneurs et des résultats expérimentaux de convoyage selon une direction sera ensuite détaillé et l'influence d'erreurs de fabrication sur le fonctionnement du réseau sera mise en évidence. / The open loop control is widely used by the digital systems to facilitate the integration in complex systems because no sensor is needed. The research is based on digital actuator which is composed of a mobile part and a fixed part. The actuator moves between the discrete positions. The discrete displacement consumes low energy, which is controlled by impulse only needed to switch the actuator between the discrete positions. However, the stroke of digital actuator is fixed at the manufacturing. So the digital actuators array is used to obtain variable strokes. A digital actuators array used here with a structured plate is applied as a 2D planar conveyance. Firstly, an actuators array composed of 25 elementary actuators with a flat plate is studied. The simulated results are compared with the experimental results. Then another actuators array composed of four elementary actuators with a structured plate is designed. The design and the plate displacement are firstly presented. Then the prototype of the conveyance is fabricated with laser cutting machine and 3D printer. The experiment is then tested in one direction to study the plate displacement. The open loop control is simple by using current impulse. The operation can be well functioned which is observed during the experiment. The experimental results are compared with the theoretical results.
77

Hybrid solar district heating: combinations of high and low temperature solar technologies : A case study of Swedish DH system

Giorgio, Lucrezia January 2021 (has links)
In Sweden, the residential and industrial energy demand is provided by a significant part of district heating. In a decarbonization plan to reduce the CO2 emissions, the integration of a large-scale solar system in the district heating can be a suitable option. The most used types of collectors are flat plate collectors (FPC), for which efficiency drops at high temperature levels. Parabolic through collectors (PTC) have seen increased interest in later years, due to their higher efficiency at higher temperature levels, which could improve system performance both energetically and economically. A hybrid concept using a combination of FPC and PTC for a solar thermal system has previously been studied for a solar district heating system in Denmark, with the aim to maximize the solar production by operating the solar collectors in the temperature ranges where they excel. The first aim of this thesis was to adapt the hybrid solar system in a district heating system for a Swedish case study and to evaluate if the hybrid optimization studied has similar positive effects in the overall thermal production of the system in Sweden, as it did in Denmark. The second aim of this thesis was to investigate the use of photovoltaic thermal collectors (PVT) instead of FPC for parts of the solar thermal system. With PVT, a single solar collector module allows for simultaneous production of heat and electricity and integration of photovoltaic thermal collectors in the solar assisted district heating could improve the overall performance of the system, both in terms of energy production and economical gain.The study was performed using the simulation tool TRNSYS based on a model developed in a danish case study. It was performed a parametric analysis on the percentage of share of the different types of solar collectors in the total area. The results given from the simulations have been used to carry out an economic evaluation based on the levelized cost of substituted energy, the annual operation and maintenance costs, and the marginal operational cost difference between a conventional district heating system supplied by a boiler only and a solar assisted district heating system. Based on the results found, it has been proved that a greater proportion of parabolic trough collectors in the solar field contribute to a greater production of thermal energy but also to higher expenses in the economy of the project. The best configuration which balanced these two factors was composed by 70 % of flat plate collectors and 30 % of parabolic trough collectors, based on the total area. The integration of photovoltaic thermal has been demonstrated to be not cost-effective for the studied location compared to the optimized ratio of FPC to PTC, mainly due to the high and uncertain price of the new technology. The use of photovoltaic thermal system is not yet widely developed in projects and there are only a few existing projects in operation today. In the future, the development of photovoltaic thermal in solar assisted district heating projects might have a higher realizable economic potential due to the industry learning curve, but more studies will need to be performed on this.
78

Computational studies of passive vortex generators for flow control

von Stillfried, Florian January 2009 (has links)
Many flow cases in fluid dynamics face undesirable flow separation due torising static pressure on wall boundaries. This occurs e.g. due to geometry as ina highly curved turbine inlet duct or e.g. on flow control surfaces such as wingtrailing edge flaps within a certain angle of attack range. Here, flow controldevices are often used in order to enhance the flow and delay or even totallyeliminate flow separation. Flow control can e.g. be achieved by using passiveor active vortex generators (VG) that enable momentum mixing in such flows.This thesis focusses on passive VGs, represented by VG vanes that are mountedupright on the surface in wall-bounded flows. They typically have an angle ofincidence to the mean flow and, by that, generate vortex structures that in turnallow for the desired momentum mixing in order to prevent flow separation.A statistical VG model approach, developed by KTH Stockholm and FOI,the Swedish Defence Research Agency, has been evaluated computationally.Such a statistical VG model approach removes the need to build fully resolvedthree-dimensional geometries of VGs in a computational fluid dynamics mesh.Usually, the generation of these fully resolved geometries is rather costly interms of preprocessing and computations. By applying this VG model, thecosts reduce to computations without VG effects included. Nevertheless, theVG model needs to be set up in order to define the modelled VG geometry inan easy and fast preprocessing step. The presented model has shown sensitivityfor parameter variations such as the modelled VG geometry and the VG modellocation in wall-bounded zero pressure gradient and adverse pressure gradientflows on a flat plate, in a diffuser, and on an airfoil with its high-lift systemextracted. It could be proven that the VG model qualitatively describes correcttrends and tendencies for these different applications.
79

A Wave Propagation Approach for Prediction of Tire-Pavement Interaction Noise

McBride Granda, Sterling Marcelo 18 September 2019 (has links)
Induced vibrations due to tire-pavement interaction are one of the main sources of vehicle exterior noise, especially near highways and main roads where traveling speeds are above 50 kph. Its dominant spectral content is approximately within 500-1500 Hz. However, accurate prediction tools within this frequency range are not available. Current methods rely on structural modeling of the complete tire using finite elements and modal expansion approaches that are accurate only at low frequencies. Therefore, alternative physically-based models need to be developed. This work proposes a new approach that incorporates wave behavior along the tire's circumferential direction, while modes are assumed along its transversal direction. The formulation for new infinite plate and cylindrical shell structural models of a tire is presented. These are capable of accounting for orthotropic material properties, different structural parameters between the belt and sidewalls, inflation pressure, and rotation of the tire. In addition, a new contact model between the pavement and the tire is developed presented. The excitation of the tire due to the impact of the tread-pattern blocks in the contact patch region is characterized and coupled to the structure of the tire. Finally, a Boundary Element Method is implemented in order to compute the vibration-induced noise produced by the tire. All the modeling components are combined in a single prediction tool named Wave Pro Tire. Lastly, simulated responses and validation cases are presented in terms of harmonic responses, Frequency Response Functions (FRF), and produced noise. / Doctor of Philosophy / Induced vibrations due to tire-pavement interaction are one of the main sources of vehicle exterior noise, especially near highways and main roads where traveling speeds are above 50 kph. Accurate prediction tools are not currently available. Therefore, new physically based models need to be developed. This work proposes a new approach to model the tire’s structure with a formulation that accounts for multiple physical phenomena. In addition, a model that simulates the contact between the pavement and the tire’s tread is presented. Finally, the vibrations are coupled to the produced noise in a single prediction tool named Wave Pro Tire. This work also includes simulated responses and validation cases.
80

Analysis and control of transitional shear flows using global modes

Bagheri, Shervin January 2010 (has links)
In this thesis direct numerical simulations are used to investigate two phenomenain shear flows: laminar-turbulent transition over a flat plate and periodicvortex shedding induced by a jet in cross flow. The emphasis is on understanding and controlling the flow dynamics using tools from dynamical systems and control theory. In particular, the global behavior of complex flows is describedand low-dimensional models suitable for control design are developed; this isdone by decomposing the flow into global modes determined from spectral analysisof various linear operators associated with the Navier–Stokes equations.Two distinct self-sustained global oscillations, associated with the sheddingof vortices, are identified from direct numerical simulations of the jet incrossflow. The investigation is split into a linear stability analysis of the steadyflow and a nonlinear analysis of the unsteady flow. The eigenmodes of theNavier–Stokes equations, linearized about an unstable steady solution revealthe presence of elliptic, Kelvin-Helmholtz and von K´arm´an type instabilities.The unsteady nonlinear dynamics is decomposed into a sequence of Koopmanmodes, determined from the spectral analysis of the Koopman operator. Thesemodes represent spatial structures with periodic behavior in time. A shearlayermode and a wall mode are identified, corresponding to high-frequency andlow-frequency self-sustained oscillations in the jet in crossflow, respectively.The knowledge of global modes is also useful for transition control, wherethe objective is to reduce the growth of small-amplitude disturbances to delaythe transition to turbulence. Using a particular basis of global modes, knownas balanced modes, low-dimensional models that capture the behavior betweenactuator and sensor signals in a flat-plate boundary layer are constructed andused to design optimal feedback controllers. It is shown that by using controltheory in combination with sensing/actuation in small, localized, regionsnear the rigid wall, the energy of disturbances may be reduced by an order of magnitude.

Page generated in 0.0551 seconds