• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Morphology study and defect analysis of encapsulated cholesteric LCD

Tseng, Heng-Yi 23 July 2012 (has links)
This thesis studies the reliability issues of encapsulated cholesteric LCD, and analyzes the defective pixel. Adjusting fabrication process parameters, we change the thickness of the buffer layer and absorption layer to explore the influence of different boundaries to CLC. It is found that the buffer layer can provide a good protection. When the buffer layer is getting thicker, the less the defective pixels appear, and the absorption layer cannot induce defect. The reflection band of the ITRI¡¦s encapsulated CLCs blue shifts to UV band and then become defective pixel. When CLCs exposed to the atmosphere with large area, the reflected color will be shifted. The shift of reflection band is due to CLC¡¦s inherent properties. Different kind of CLC has different properties, and we found the reflection band of ITRI¡¦s CLC is blue shift and the nematic E48 with chiral dopant R811 is red. Mixing different features of CLCs with appropriate proportion can reduce the color shift. In conclusion, mixing different characteristics CLCs with appropriate proportion and providing good protection to encapsulated CLC, we can reduce CLC¡¦s color shift and restrain the defective pixel.
2

Influence of polymerization conditions on electro-optical properties of encapsulated cholesteric LCD

Wang, Wei-Yuan 18 July 2011 (has links)
This paper study the influence of surface properties of encapsulated CLC on response time and reflectance via polymerization induced phase separation. The cured polymer layer, which is composed of the mixture of EMA and TRI, adhere to the inside of the non-treated glass substrate and change the surface properties to vertical alignments. Different boundary conditions caused by various UV curing intensity and cell gap lead to different electro-optical properties for CLC display. With a proper boundary structure, the transition time from homeotropic to planar of CLC can be reduced obviously with slightly reduced reflectance.
3

Study of Multi-domain Vertical Alignment Flexible Liquid Crystal Display

Kuo, Chien-Ting 15 July 2009 (has links)
Multi-domain Vertical Alignment Flexible Liquid Crystal Display based on photolithography and replica-Molding method has been demonstrated. In order to maintain a uniform cell gap between flexible substrate,the microstructures were fabricated with polydimethylsiloxane (PDMS) material by replica-molding method. The microstructures master were designed and fabricated using a photosensitive resin (SU-8) by photolithography. The microstructures of pixel-encapsulated walls enhance the mechanical strength to prevent the liquid crystal molecules flow in the bend state deformations. Besides, the elastomeric material, PDMS, provide weak surface energy and induce vertical alignment for liquid crystal spontanelusly without any surface treatment. The microstructure protrusions made by PDMS can provide multi-domain vertical alignment (MVA) effect with wide viewing angle and high contrast ratio. Therefore, this method could be implemented for achieving multi-domain vertical alignment on a flexible LCD applications. The flexible LCD have great stability reproducibility, durability and good electro-optical performances.
4

New Materials and Device Designs for Organic Light-Emitting Diodes

January 2017 (has links)
abstract: Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications. Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments. Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials. This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red/green/blue structure to produce light with high color rendering index. Another part of this work describes the fabrication of a 14.7" diagonal full color active-matrix OLED display on plastic substrate. The backplanes were designed and fabricated in the ASU Flexible Display Center and required significant engineering to develop; a discussion of that process is also included. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2017
5

Fabrication and Characterization of Micro-membrane GaN Light Emitting Diodes

Liao, Hsien-Yu 05 1900 (has links)
Developing etching of GaN material system is the key to device fabrications. In this thesis, we report on the fabrication of high throughput lift-off of InGaN/GaN based micro-membrane light emitting diode (LED) from sapphire substrate using UV-assisted photoelectroless chemical (PEsC) etching. Unlike existing bandgap selective etching based on unconventional sacrificial layer, the current hydrofluoric acid based wet etching process enables the selective etching of undoped GaN layer already incorporated in standard commercial LED structures, thus attaining the leverage on high performance device design, and facile wet process technology. The lift-off micro-membrane LED showed 16% alleviated quantum efficiency droop under 200 mA/cm2 current injection, demonstrating the advantage of LED epitaxy exfoliation from the lattice-mismatched sapphire substrate. The origin of the performance improvement was investigated based on non-destructive characterization methods. Photoluminescence (PL) characterization showed a 7nm peak emission wavelength shift in the micro-membrane LED compared to the GaN-on-Sapphire LED. The Raman spectroscopy measurements correlate well with the PL observation that a 0.86 GPa relaxed compressive biaxial strain was achieved after the lift-off process. The micro-membrane LED technology enables further heterogeneous integration for forming pixelated red, green, blue (RGB) display on flexible and transparent substrate. The development of discrete and membrane LEDs using nano-fiber paper as the current spreading layer was also explored for such integration.
6

Flexible Electronics and Display Technology for Medical, Biological, and Life Science Applications

January 2014 (has links)
abstract: This work explores how flexible electronics and display technology can be applied to develop new biomedical devices for medical, biological, and life science applications. It demonstrates how new biomedical devices can be manufactured by only modifying or personalizing the upper layers of a conventional thin film transistor (TFT) display process. This personalization was applied first to develop and demonstrate the world's largest flexible digital x-ray detector for medical and industrial imaging, and the world's first flexible ISFET pH biosensor using TFT technology. These new, flexible, digital x-ray detectors are more durable than conventional glass substrate x-ray detectors, and also can conform to the surface of the object being imaged. The new flexible ISFET pH biosensors are >10X less expensive to manufacture than comparable CMOS-based ISFETs and provide a sensing area that is orders of magnitude larger than CMOS-based ISFETs. This allows for easier integration with area intensive chemical and biological recognition material as well as allow for a larger number of unique recognition sites for low cost multiple disease and pathogen detection. The flexible x-ray detector technology was then extended to demonstrate the viability of a new technique to seamlessly combine multiple smaller flexible x-ray detectors into a single very large, ultimately human sized, composite x-ray detector for new medical imaging applications such as single-exposure, low-dose, full-body digital radiography. Also explored, is a new approach to increase the sensitivity of digital x-ray detectors by selectively disabling rows in the active matrix array that are not part of the imaged region. It was then shown how high-resolution, flexible, organic light-emitting diode display (OLED) technology can be used to selectively stimulate and/or silence small groups of neurons on the cortical surface or within the deep brain as a potential new tool to diagnose and treat, as well as understand, neurological diseases and conditions. This work also explored the viability of a new miniaturized high sensitivity fluorescence measurement-based lab-on-a-chip optical biosensor using OLED display and a-Si:H PiN photodiode active matrix array technology for point-of-care diagnosis of multiple disease or pathogen biomarkers in a low cost disposable configuration. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2014
7

WAVEGUIDE LIQUID CRYSTAL DISPLAYS AND OPTICAL DIFFRACTION GRATING BASED ON FLEXOELECTRIC LIQUID CRYSTALS AND POLYMER STABILIZED LIQUID CRYSTALS

Shin, Yunho 24 April 2023 (has links)
No description available.

Page generated in 0.052 seconds