• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 32
  • 8
  • 7
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 269
  • 269
  • 108
  • 98
  • 60
  • 46
  • 35
  • 32
  • 30
  • 29
  • 24
  • 23
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Approche d'intégrité bout en bout pour les communications dans les systèmes embarqués critiques : application aux systèmes de commande de vol d'hélicoptères / End to end integrity approach for communication incritical embedded systems : application to helicopters flight control systems

Zammali, Amira 13 January 2016 (has links)
Dans les systèmes embarqués critiques, assurer la sûreté de fonctionnement est primordial du fait, à la fois, des exigences en sûreté dictées par les autorités de certification et des contraintes en sûreté de ces systèmes où des défaillances pourraient conduire à des évènements catastrophiques, voire la perte de vies humaines. Les architectures de ces systèmes sont aujourd'hui de plus en plus distribuées, s'appuyant sur des réseaux numériques complexes, ce qui pose la problématique de l'intégrité des communications. Dans ce contexte, nous proposons une approche bout en bout pour l'intégrité des communications, basée sur le concept du " canal noir " introduit par l'IEC 61508. Elle utilise les codes détecteurs d'erreurs CRC, Adler et Fletcher. Selon le niveau de redondance des systèmes, nous proposons une approche multi-codes (intégrité jugée sur un lot de messages) pour les systèmes dotés d'un niveau de redondance important et une approche mono-code (intégrité jugée sur chaque message) pour les autres cas. Nous avons validé ces propositions par des expérimentations évaluant le pouvoir de détection intrinsèque de chaque code détecteur et la complémentarité entre ces code en termes de pouvoir de détection, ainsi que leurs coûts de calcul avec une analyse de l'impact du type de leur implémentation et de l'environnement matériel (standard et embarqué : processeurs i7, STM32, TMS320C6657 et P2020). L'approche mono-code a été appliquée à un cas d'étude industriel : les futurs systèmes de commande de vol d'Airbus Helicopters. / In critical embedded systems, ensuring dependability is crucial given both dependability requirements imposed by certification authorities and dependability constraints of these systems where failures could lead to catastrophic events even loss of human lives. The architectures of these systems are increasingly distributed deploying complex digital networks which raise the issue of communication integrity. In this context, we propose an end to end approach for communication integrity. This approach is based on the "black channel" concept introduced by IEC 61508. It uses error detection codes particularly CRC, Adler and Fletcher. Depending on the redundancy level of targeted systems, we propose a multi-codes approach (integrity of a set of messages) for systems with an important redundancy level and a single- code approach (integrity per message) for the other cases. We validated our proposals through experiments in order to evaluate intrinsic error detection capability of each error detection code, their complementarity in terms of error detection and their computational costs by analyzing the impact of the type of implementation and the hardware environment (standard or embedded: i7, STM32, TMS320C6657 and P2020 processors). The single-code approach was applied to an industrial case study: future flight control systems of Airbus Helicopters.
262

Numerical Study of Shock-Dominated Flow Control in Supersonic Inlets

Davis Wagner (17565198) 07 December 2023 (has links)
<p dir="ltr">This thesis concentrates on the improvement of the quality of shock-dominated flows in supersonic inlets by controlling shock wave / boundary layer interactions (SWBLIs). SWBLI flow control has been a major issue relevant to scramjet-associated endeavors for many years. The ultimate goal of this study is to numerically investigate SWBLI flow control through the application of steady-state thermal sources --- which were defined to replicate the Joule heating effect produced by Quasi-DC electric discharges --- and compare the results with data obtained from previous experiments.</p><p dir="ltr">Numerical solutions were obtained using both a three-dimensional, unsteady Reynolds-averaged Navier-Stokes (RANS) solver with a Spalart-Allmaras (SA) Detached Eddy Simulation (DES) turbulence modeling method and also a simple three-dimensional, compressible RANS solver with a SA turbulence model. Computations employed an ideal gas thermodynamic model. The numerical code is Stanford University Unstructured (SU2), an open-source, unstructured grid, computational fluid dynamics code. The SU2 code was modified to include volumetric thermal source terms to represent the Joule heating effect of electric current flowing through the gas. The computational domain, source term configuration, and flow conditions were defined in accordance with experiments carried out at the University of Notre Dame. Mach 2 flow enters the three-dimensional test domain with a stagnation pressure of 1.7 bar. The test domain is contained by four isothermal side walls maintained at room temperature, as well as an inlet and outlet. A shock wave (SW) generator, a symmetric 10 degree wedge, is positioned on the upper surface of the test domain. The overall length of the test sections is 910 mm and inlet length of the computational domain is increased prior to the location of shock wave generator in order to allow for adequate boundary layer growth. Volumetric heating source terms were positioned on the lower surface of the test domain in the reflected SW region.</p><p dir="ltr">Experimental results show that the thermal sources create a new shock train within the duct and do not initiate significant additional pressure losses. What remains to be explored is the overall characterization of the 3D flow features and dynamics of the thermally induced SW and the effect of gas heating on total pressure losses in the test section.</p><p dir="ltr">Numerical solutions validate what is observed experimentally, and offer the ability to gather more temporally and spatially-resolved measurements to better understand and characterize shock-dominated flow control in a supersonic inlet or duct. Although thermally driven SWBLI flow control requires additional research, this study alleviates the dependency on experimentally driven data and adds insight into the nature of the complex unsteady, three-dimensional flowfield.</p>
263

SIMULATOR BASED MISSION OPTIMIZATION FOR SWARM UAVS WITH MINIMUM SAFETY DISTANCE BETWEEN NEIGHBORS

Xiaolin Xu (17592396) 11 December 2023 (has links)
<p dir="ltr">Methodologies for optimizing UAVs' control for varied environmental conditions have become crucial in the recent development for UAV control sector, yet they are lacking. This research focuses on the dynamism of the Gazebo simulator and PX4 Autopilot flight controller, frequently referenced in academic sectors for their versatility in generating close-to-reality digital environments. This thesis proposed an integrated simulation system that ensures realistic wind and gust interactions in the digital world and efficient data extraction by employing an industrial standard control communication protocol called MAVLink with the also the industry standard ground control software QGroundControl, using real and historical weather information from NOAA database. This study also looks into the potential of reinforcement learning, namely the DDPG algorithm, in determining optimal UAV safety distance, trajectory prediction, and mission planning under wind disruption. The overall goal is to enhance UAV stability and safety in various wind-disturbed conditions. Mainly focusing on minimizing potential collision risks in areas such as streets, valleys, tunnels, or really anywhere has winds and obstacles. The ROS network further enhanced these components, streamlining UAV response analysis in simulated conditions. This research presents a machine-learning approach to UAV flight safety and efficiency in dynamic environments by synthesizing an integrated simulation system with reinforcement learning. And the results model has a high accuracy, reaching 91%, 92%, and 97% accuracy on average in prediction of maximum shifting displacement, and left/right shifting displacement, when testing with real wind parameters from KLAF airport. </p>
264

Modeling, Training, and Teaming Approaches for Cyber-Physical-Human Systems

Sooyung Byeon (18431625) 26 April 2024 (has links)
<p dir="ltr">Cyber-physical-human systems (CPHSs) integrate human cognitive capabilities into the decision and control processes of complex dynamical systems. While artificial intelligence (AI) has shown promise in controlling such systems, it often encounters challenges such as conflict with human behavior and brittleness. Moreover, even successful AI implementations may lead to negative impacts on humans, such as the degradation of manual skills and diminished situation awareness, thereby weakening humans' ability to effectively monitor and intervene in off-nominal conditions as the final decision-makers of the systems. To address these unique challenges within CPHSs, this dissertation proposes three key approaches. First, human behavior modeling approaches are proposed to enhance understanding and prediction of human behavior from the perspective of AI. Accurate modeling enables better calibration of AI's expectations regarding human teammates' intentions and skill-levels. Second, a novel shared control approach is developed to expedite human training for complex dynamic control tasks. An assistant agent supports human novices in emulating human experts by leveraging human behavior models to gauge the human's skill-levels and provide tailored assistance to help improve one's skill. Lastly, human-autonomy teaming (HAT) design is addressed from a resource allocation perspective. A systematic computational simulation approach is proposed to optimize function and attention allocation to manage trade-offs in performance, situation awareness, workload, and other considerations. The proposed frameworks are demonstrated via examples in drone applications. Numerical and experimental results, utilizing simulation platforms and human subjects, validate the efficacy of the proposed approaches. This dissertation presents significant progress in the design and implementation of CPHSs in that it offers insights and methodologies to enhance collaborative interactions between humans and autonomous systems in complex environments.</p>
265

Modeling, control, and estimation of flexible, aerodynamic structures

Ray, Cody W. 19 April 2012 (has links)
Engineers have long been inspired by nature's flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature's flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment. / Graduation date: 2012
266

Adaptive Envelope Protection Methods for Aircraft

Unnikrishnan, Suraj 19 May 2006 (has links)
Carefree handling refers to the ability of a pilot to operate an aircraft without the need to continuously monitor aircraft operating limits. At the heart of all carefree handling or maneuvering systems, also referred to as envelope protection systems, are algorithms and methods for predicting future limit violations. Recently, envelope protection methods that have gained more acceptance, translate limit proximity information to its equivalent in the control channel. Envelope protection algorithms either use very small prediction horizon or are static methods with no capability to adapt to changes in system configurations. Adaptive approaches maximizing prediction horizon such as dynamic trim, are only applicable to steady-state-response critical limit parameters. In this thesis, a new adaptive envelope protection method is developed that is applicable to steady-state and transient response critical limit parameters. The approach is based upon devising the most aggressive optimal control profile to the limit boundary and using it to compute control limits. Pilot-in-the-loop evaluations of the proposed approach are conducted at the Georgia Tech Carefree Maneuver lab for transient longitudinal hub moment limit protection. Carefree maneuvering is the dual of carefree handling in the realm of autonomous Uninhabited Aerial Vehicles (UAVs). Designing a flight control system to fully and effectively utilize the operational flight envelope is very difficult. With the increasing role and demands for extreme maneuverability there is a need for developing envelope protection methods for autonomous UAVs. In this thesis, a full-authority automatic envelope protection method is proposed for limit protection in UAVs. The approach uses adaptive estimate of limit parameter dynamics and finite-time horizon predictions to detect impending limit boundary violations. Limit violations are prevented by treating the limit boundary as an obstacle and by correcting nominal control/command inputs to track a limit parameter safe-response profile near the limit boundary. The method is evaluated using software-in-the-loop and flight evaluations on the Georgia Tech unmanned rotorcraft platform- GTMax. The thesis also develops and evaluates an extension for calculating control margins based on restricting limit parameter response aggressiveness near the limit boundary.
267

Sliding Mode Control Based Guidance Strategies with Terminal Constraints

Kumar, Shashi Ranjan January 2015 (has links) (PDF)
In the guidance literature, minimizing miss distance along with optimizing the energy usage had been an objective for several decades. In current day applications, additional terminal performance such as impact angle and impact time are of paramount importance. These terminal constraints increase warhead effectiveness and survivability of the interceptor. This thesis contributes to the design of guidance laws addressing terminal constraints such as impact angle, impact time, and both impact time as well as impact angle, in addition to interception of targets. In the first part of the thesis, the guidance laws which ensure the alignment of the interceptor at a desired impact angle within a finite time is proposed using different variants of sliding mode control(SMC).The impact angle is first redefined in terms of line-of-sight angle and then the impact angle problem is converted to a simpler problem of controlling line-of-sight angle and their rates. The sliding mode capturability and interpretation of the guidance laws are presented. In order to cater to very large heading angle errors, which give rise to negative closing speed initially, modifications to the guidance laws are also suggested. The modifications to the guidance laws for avoiding singularities, which may be encountered during implementation, due to the inherent nature of terminal SMC, are suggested. However, the guidance laws, which alleviates the possibility of such singularities completely, are also designed by using non singular terminal SMC. The two loop guidance and control, for a skid-to-turn cruciform interceptor in the pitch plane, is also proposed with an autopilot designed using the concept of dynamic SMC. The guidance laws addressing impact angle constraint for three dimensional scenarios are also presented. Unlike the usual approach of decoupling the three dimensional engagement in to two mutually orthogonal planar engagements, the guidance laws are derived using coupled engagement dynamics. These guidance laws are designed using conventional and non singular terminal SMC and provide asymptotic and finite time alignment of the intercept or to the desired impact angles, respectively. Next, the SMC based guidance laws which ensure the interception of targets at pre-specified impact times is proposed in this thesis. The guidance law is first designed for stationary targets and then extended to constant velocity targets using the notion of predicted interception point. A switching surface is designed using the concepts of collision course and time-to-go with non-linear engagement dynamics and its role in achieving the objectives is also discussed. In order to account for large heading angle errors and even for negative initial closing speeds, different methods of estimation of time-to-go, resulting in two different guidance laws, are used. Unlike the existing guidance laws, the proposed guidance laws achieve an impact time even less than its initially estimated value. The flexibility in selecting a desired impact time is also exploited using the maximum available acceleration information. A cooperative salvo attack strategy, based on the proposed impact time guidance law, with a desired impact time chosen in real time using a centralized coordination algorithm, is proposed for stationary targets. The coordination manager determines a common impact time based on time-to-goof the interceptors, by minimizing the total switching surface deviations which in turn reduces the control effort. The thesis also proposes a SMC based guidance strategy which addresses impact angle and impact time constraints simultaneously. This guidance scheme is based on switching between impact time and impact angle guidance laws based on certain conditions. Unlike existing impact time guidance laws, the proposed guidance strategy takes into account the curvature of the trajectory due to the impact angle requirement. The interceptor first corrects its course to nullify the impact time error and then aims to achieve interception with desired impact angle. In order to reduce the transitions between the two guidance laws, a novel hysteresis loop is introduced in the switching conditions. Initially stationary targets are considered, and later the same guidance scheme is extended to constant velocity targets using the notion of predicted interception point. Theclaimsofalltheguidancelawsarevalidatedwithextensivesimulationsandtheir performances are compared with existing guidance laws. Although all the guidance laws derived in the thesis are based on the assumption of constant speed interceptors, their performances are evaluated with a time-varying speed interceptor model, subjected to aerodynamic conditions, to validate their efficacy. The implementation of impact time guidance on time-varying speed interceptors is a formidable challenge in the guidance literature. Such implementations have also been presented in the thesis after introducing the notion of average speed and shown to yield satisfactory performance.
268

Návrh autopilota a letových řídících módů v prostředí Simulink / Development of Autopilot and Flight Director Modes inside a Simulink Environment

Novák, Jiří January 2020 (has links)
Tato diplomová práce je zaměřena na vývoj simulačního prostředí v Matlab/Simulink zvoleného letadla ve známém letovém režimu. Pozice a orientace letadla pohybujícího se ve vzduchu je popsána pohybovými rovnicemi se šesti stup\v{n}i volnosti. Soustava translačních, rotačních a kinematických rovnic tvoří soustavu devíti nelineárních diferenciálních rovnic prvního řádu. Tyto rovnice lze linearizovat okolo nějakého rovnovážného stavu, který budeme nazývat letovým režimem. Součástí simulačního prostředí je řídící systém letadla založený na PID regulaci. Základem je návrh autopilota, který řídí úhel podélného sklonu a úhel příčného náklonu. Součástí návrhu jsou takzvané „flight director\textquotedblright \phantom{s}m\'dy jako udržení výšky, volba kursu, regulace vertikální rychlosti, změna výšky, zachycení požadované výšky a navigační m\'{o}d založený na nelineárním navigačním zákonu. Optimalizace regulátorů za použití PSO algoritmu a Pareto optimalitě je využita pro nastavení parametrů PID regulátoru. Simulační prostředí je vizualizováno v softwaru FlightGear.
269

Návrh a evaluace moderních systémů řízení letu / Modern Flight Control System Design and Evaluation

Vlk, Jan January 2021 (has links)
Tato práce je zaměřena na výzkum moderních metod automatického řízení letu a jejich ověření s ohledem na současný stav poznání a budoucí využití bezpilotních letadlových systémů. Práce představuje proces návrhu automatického systému řízení letu s důrazem na přístupy z oblasti návrhu založeného na modelování (Model-Based Design). Nedílnou součástí tohoto procesu je tvorba matematického modelu letounu, který byl využit k syntéze zákonů řízení a k vytvoření simulačního rámce pro evaluaci stability a kvality regulace automatického systému řízení letu. Jádro této práce se věnuje syntéze zákonů řízení založených na unikátní kombinaci teorie optimálního a adaptivního řízení. Zkoumané zákony řízení byly integrovány do digitálního systému řízení letu, jenž umožňuje vysoce přesné automatické létání. Závěrečná část práce se zabývá ověřením a analýzou navrženého systému řízení letu a je rozdělena do 3 fází. První fáze ověření obsahuje evaluaci robustnosti a analyzuje stabilitu a robustnost navrženého systému řízení letu ve frekvenční oblasti. Druhá fáze, evaluace kvality regulace, probíhala v rámci počítačových simulací s využitím vytvořených matematických modelů v časové oblasti.  V poslední fázi ověření došlo k integraci navrženého systému řízení letu do experimentálního letounu, sloužícího jako testovací platforma pro budoucí bezpilotní letadlové systémy a jeho evaluaci v rámci série letových experimentů.

Page generated in 0.0639 seconds