• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 11
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 94
  • 94
  • 94
  • 91
  • 24
  • 21
  • 20
  • 20
  • 20
  • 19
  • 17
  • 17
  • 12
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Vanadium Oxide Anions Clusters: Their Abundances, Structures and Reactions with SO₂

Wyrwas, Richard Ben, Jr. 22 November 2004 (has links)
Early transition metal oxide clusters have been a focus of study for several years. The production of vanadium oxide cluster anions in a pulsed helium flow reactor provides a relatively precise way of introducing defect sites and controlling the oxidation state of the vanadium atoms. The composition of the clusters can be changed from the V2O5 stoichiometry, where the vanadium atom is in a +5 oxidation state, to more reduced stoichiometries yielding a mixture of oxidation states containing atoms in the +2 oxidation state. The subsequent addition of reactant gases such as H2O and SO2 yields very intense adsorption reactions as well as a demonstration of the robustness of particular defect free clusters. For example, the cluster has been identified as a defect free cluster where all vanadium atoms are in the +5 oxidation state and all oxygen atoms are predicted to be in the 2- state. The cluster has been shown to not adsorb SO2- while clusters in a reduced oxidation state, such as and readily adsorb one or more SO2 molecules. The adsorption process has been shown to be size dependent, with the smallest monovanadium oxide anions being the most reactive.
82

Métodos rápidos para identificação microbiana aplicados ao monitoramento ambiental de salas limpas: ênfase na tecnologia MALDI-TOF / Rapid methods for microbial identification applied to clean room environmental monitoring: emphasis on MALDI-TOF technology

Laíse de Oliveira Andrade 10 October 2017 (has links)
A espectrometria de massas baseada na tecnologia MALDI-TOF (do inglês, matrix-assisted laser desorption ionization-time of flight) (MALDI-TOF MS) tem sido cada vez mais incorporada à rotina de identificações microbiológicas nos laboratórios farmacêuticos de controle de qualidade, principalmente para as atividades do Programa de Monitoramento Ambiental de Salas Limpas. Isso porque o longo tempo necessário para a obtenção dos resultados por meio de métodos convencionais tem incentivado a procura por técnicas que permitam métodos rápidos. O objetivo deste trabalho foi avaliar a adequação da técnica MALDI-TOF MS para a identificação de bactérias isoladas do ambiente de salas limpas utilizadas em algumas etapas da produção de uma vacina viral. Treze espécies bacterianas conhecidas, normalmente isoladas das salas limpas estudadas, e cinco cepas ATCC foram identificadas pela técnica MALDI-TOF MS e por uma técnica bioquímica (BBL Crystal®). O desempenho da técnica MALDI-TOF MS foi superior ao da técnica bioquímica na identificação correta das espécies bacterianas (88,89% e 38,89%, respectivamente) e produziu menos identificações não confiáveis (5,55% e 22,22%, respectivamente). Os resultados evidenciaram que a técnica MALDI-TOF MS pode ser implementada para identificação rotineira de bactérias em um laboratório de controle de qualidade farmacêutico. Entretanto, a dependência de bases de dados exige estudos adicionais de isolados não identificados e, se apropriado, a adição destes a uma base de dados interna. O aperfeiçoamento de métodos de identificação microbiana é muito relevante no contexto de salas limpas, pois permitem ações corretivas e proativas essenciais para garantir a segurança microbiológica do processamento asséptico. / Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been increasingly introduced in routine microbiological identifications of pharmaceutical quality control laboratories, mainly for the activities of the Environmental Monitoring Program of Clean Rooms. The long time needed to obtain the results through conventional methods has stimulated the search for techniques that allow rapid methods, as MALDI-TOF MS. Thus, the objective of this work was to evaluate the suitability of the MALDI-TOF MS technique for the identification of bacteria isolated from the environment of clean rooms used in some stages of the production of a viral vaccine. Thirteen bacterial species commonly isolated from clean rooms studied and five strains ATCC were identified by MALDI-TOF MS technique and by a biochemical technique (BBL Crystal® System). Performance of MALDI-TOF MS was better than biochemical technique for correct species identifications (88.89% and 38.89%, respectively) and produced fewer unreliable identifications (5.55% and 22.22%, respectively). MALDI-TOF MS can be implemented for routine identification of bacteria in a pharmaceutical quality control laboratory. However, as a database-dependent system, maybe some isolated not identified by this technique must be additionally studied and, if appropriate, added to an in-house database.
83

The impact of material surface characteristics on the clinical wetting properties of silicone hydrogel contact lenses

Read, Michael Leonard January 2011 (has links)
This PhD project investigated the ramifications of air-cured and nitrogen-cured manufacturing processes during silicone hydrogel contact lens manufacture in terms of lens surface characterisation and clinical performance. A one-hour contralateral clinical study was conducted for ten subjects to compare the clinical performance of the two study lenses. The main clinical findings were reduced levels of subjective performance, reduced surface wettability and increased deposition. Contact angle analysis showed the air-cured lenses had consistently higher advancing and receding contact angle measurements, in comparison with the nitrogen-cured lens. Chemical analysis of the study lens surfaces in the dehydrated state, by x-ray photoelectron spectroscopy (XPS) and time-of-flight mass spectrometry (ToF-SIMS), showed no difference due to surface segregation of the silicone components. Analysis of frozen lenses limited surface segregation and showed a higher concentration of silicone polymer components and lower concentration of hydrophilic polymer components at the surface of the air-cured lens, in comparison with the nitrogen-cured lens. Scanning electron microscope (SEM) imaging showed the nitrogen-cured lens to have a surface typical of a hydrogel material, whereas the air-cured lens had regions of apparent phase separation. In addition, atomic force microscopy (AFM) showed the air-cured lens to have a rougher surface associated with greater adherence of contaminants (often observed in materials with reduced polymer cross-linking). In conclusion, clinical assessment of the study lenses confirmed the inferior performance of the air-cured lens. Surface analysis suggested that the non-wetting regions on the air-cured lenses were associated with elevated level of silicone components, reduced polymer cross-linking and polymer phase separation.
84

Analysis of Clinically Important Compounds Using Electrophoretic Separation Techniques Coupled to Time-of-Flight Mass Spectrometry

Peterson, Zlatuse Durda 16 April 2004 (has links)
Capillary electrophoretic (CE) separations were successfully coupled to time-of-flight mass spectrometric (TOFMS) detection for the analysis of three families of biological compounds that act as mediators and/or indicators of disease, namely, catecholamines (dopamine, epinephrine, norepinephrine) and their O-methoxylated metabolites (3-methoxytyramine, norepinephrine, and normetanephrine), indolamines (serotonin, tryptophan, and 5-hydroxytryptophan), and angiotensin peptides. While electrophoretic separation techniques provided high separation efficiency, mass spectrometric detection afforded specificity unsurpassed by other types of detectors. Both catecholamines and indolamines are present in body fluids at concentrations that make it possible for them to be determined by capillary zone electrophoresis coupled to TOFMS without employing any preconcentration scheme beyond sample work up by solid phase extraction (SPE). Using this hyphenated approach, submicromolar levels of catecholamines and metanephrines in normal human urine and indolamines in human plasma were detected after the removal of the analytes from their biological matrices and after preconcentration by SPE on mixed mode cation-exchange sorbents. The CE-TOFMS and SPE methods were individualized for each group of compounds. While catecholamines and metanephrines in urine samples were quantitated using 3,4-dihydroxybenzylamine as an internal standard, deuterated isotopes, considered ideal internal standards, were used for the quantitation of indolamines. Because the angiotensin peptides are present in biological fluids at much lower concentrations than the previous two families of analytes, their analysis required the application of additional preconcentration techniques. In this work, the coupling of either of two types of electrophoretic preconcentration methods - field amplified injection (FAI) and isotachophoresis (ITP) - to capillary zone electrophoresis with both UV and MS detection was evaluated. Using FAI-CE-UV, angiotensins were detected at ~1 nM concentrations. Using similar conditions but TOFMS detection, the detection limits were below 10 nM. ITP was evaluated in both single-column and two-column comprehensive arrangements. The detection limits achieved for the ITP-based techniques were approximately one order of magnitude higher than for the FAI-based preconcentration. While the potential usefulness of these techniques was demonstrated using angiotensins standards, substantial additional research would be required to allow these approaches to be applied to plasma as part of clinical assays.
85

Electrical properties of the µs pulsed glow discharge in a Grimm-type source: comparison of dc and rf modes

Efimova, Varvara, Hoffmann, Volker, Eckert, Jürgen January 2011 (has links)
The electrical properties, in particular the U–I characteristics, current and voltage signal shapes within the pulse, are important parameters for the understanding of the processes taking place in the pulsed glow discharge (PGD). The electrical properties are also closely related to the analytical performance of the PGD such as sputtering rates, crater shapes and emission yields. Moreover, the dependence of the U–I plots on the density of the discharge gas can be used to estimate the gas temperature. This result is relevant for the analysis of thermally fragile samples. Nevertheless, there is a lack of PGD studies where the current and voltage signals are considered in detail. Therefore, this article is dedicated to the electrical properties of PGD. The influence of the PGD parameters (duty cycle and pulse duration) on the electrical properties is examined. The results highlight the optimum parameters for particular analytical applications. The question, whether direct current (dc) and radio frequency (rf) discharges behave similarly is also discussed and all experiments are performed for both modes. The comparative studies reveal strong similarities between dc and rf pulsed discharges. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
86

Identification of the initial reactive sites of micellar and non‑micellar casein exposed to microbial transglutaminase

Duerasch, Anja, Konieczny, Maja, Henle, Thomas 20 March 2024 (has links)
To investigate the influence of the internal micellar structure on the course of enzymatic cross-linking especially in the initial phase of the reaction, casein micelles isolated from raw milk via ultracentrifugation were incubated with microbial transglutaminase (mTG) in comparison with non-micellar sodium caseinate. Reactive lysine and glutamine residues were identified using a label-free approach, based on the identification of isopeptides within tryptic hydrolysates by targeted HRMS as well as manual monitoring of fragmentation spectra. Identified reactive sites were furthermore weighted by tracking the formation of isopeptides over an incubation time of 15, 30, 45 and 60 min, respectively. Fifteen isopeptides formed in the early stage of mTG cross-linking of caseins were identified and further specified concerning the position of lysine and glutamine residues involved in the reaction. The results revealed lysine K176 and glutamine Q175 of β-casein as the most reactive residues, which might be located in a highly flexible region of the molecule based on different possible reaction partners identified in this study. Except for the isopeptide αₛ₁ K34–αₛ₂ Q101 in sodium caseinate (SC), all reactive sites were detected in micellar and in non-micellar casein, indicating that the initial phase of enzymatic cross-linking is not affected by micellar aggregation of caseins.
87

High-Throughput Fingerprinting of Rhizobial Free Fatty Acids by Chemical Thin-Film Deposition and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

Gladchuk, Aleksey, Shumilina, Julia, Kusnetsova, Alena, Bureiko, Ksenia, Billig, Susan, Tsarev, Alexander, Alexandrova, Irina, Leonova, Larisa, Zhukov, Vladimir A., Tikhonovich, Igor A., Birkemeyer, Claudia, Podolskaya, Ekaterina, Frolov, Andrej 19 April 2023 (has links)
Fatty acids (FAs) represent an important class of metabolites, impacting on membrane building blocks and signaling compounds in cellular regulatory networks. In nature, prokaryotes are characterized with the most impressing FA structural diversity and the highest relative content of free fatty acids (FFAs). In this context, nitrogen-fixing bacteria (order Rhizobiales), the symbionts of legumes, are particularly interesting. Indeed, the FA profiles influence the structure of rhizobial nodulation factors, required for successful infection of plant root. Although FA patterns can be assessed by gas chromatography—(GC-) and liquid chromatography—mass spectrometry (LC-MS), sample preparation for these methods is time-consuming and quantification suffers from compromised sensitivity, low stability of derivatives and artifacts. In contrast, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) represents an excellent platform for high-efficient metabolite fingerprinting, also applicable to FFAs. Therefore, here we propose a simple and straightforward protocol for high-throughput relative quantification of FFAs in rhizobia by combination of Langmuir technology and MALDI-TOF-MS featuring a high sensitivity, accuracy and precision of quantification. We describe a step-by-step procedure comprising rhizobia culturing, pre-cleaning, extraction, sample preparation, mass spectrometric analysis, data processing and post-processing. As a case study, a comparison of the FFA metabolomes of two rhizobia species—Rhizobium leguminosarum and Sinorhizobium meliloti, demonstrates the analytical potential of the protocol.
88

Advances in identifying archaeological traces of horn and other keratinous hard tissues

O'Connor, Sonia A., Solazzo, C., Collins, M. 2014 June 1923 (has links)
No / Despite being widely utilized in the production of cultural objects, keratinous hard tissues, such as horn, baleen, and tortoiseshell, rarely survive in archaeological contexts unless factors combine to inhibit biodeterioration. Even when these materials do survive, working, use, and diagenetic changes combine to make identification difficult. This paper reviews the chemistry and deterioration of keratin and past approaches to the identification of keratinous archaeological remains. It describes the formation of horn, hoof, baleen, and tortoiseshell and demonstrates how identification can be achieved by combining visual observation under low-power magnification with an understanding of the structure and characteristic deterioration of these materials. It also demonstrates how peptide mass fingerprinting of the keratin can be used to identify keratinous tissues, often to species, even when recognizable structural information has not survived.
89

Identification of Monoclonal Antibodies:Peptide Mass Fingerprinting (PMF) with Matrix Assisted Laser Desorption/Ionization (MALDI), Time of Flight (ToF), Mass Spectrometry (MS) and Protein Peptide Mapping (PPM) with Capillary Electrophoresis (CE) / Identifiering av monoklonala antikroppar:Peptide Mass Fingerprinting (PMF) med Matrix Assisted Laser Desorption/Ionization (MALDI), Time of Flight (ToF), Masspektrometri (MS) och Protein Peptide Mapping (PPM) med kapillärelektrofores (CE)

Bengtsson, Sofia January 2023 (has links)
Antalet monoklonala antikroppar som används i läkemedel ökar kraftigt. Dessa läkemedel är dyra och risken för förfalskning är stor. Behovet att utveckla en metod för snabb och precis identifiering av monoklonala antikroppar är därför brådskande. För identifiering utfördes analyser med Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF-MS), Capillary Gel Electrophoresis (CGE) and Capillary Zone Electrophoresis (CZE) på nio monoklonala antikroppar. Fokuset var att undersöka huruvida signifikanta fysiokemiska egenskaper och unika aminosyrasekvenser var närvarande och kunde urskiljas. Olika analyser med MALDI-ToF-MS användes till att både separera de monoklonala antikropparna baserat på dess fysiokemiska egenskaper, och annotera aminosyrasekvenser innehållande nyckelfragment. Med metoderna baserade på kapillärelektrofores uppnåddes också separation. CZE föredras framför CGE då mängden data som erhålls från CZE är större och provberedningen är enklare. Sammanfattningsvis utformades ett protokoll för identifieringsprocessen, vilket inleds med MALDI-ToF-MS-analyser av monoklonala antikroppar på reducerad form mot kända referenser. Därefter är en hypotes formulerad utifrån vilka antikroppar som ser mest lika ut. Slutligen analyseras dessa med CZE för fastställning av den monoklonala antikroppens identitet. / The number of monoclonal antibodies used in pharmaceuticals is increasing sharply. These medicines are expensive, and the risk of counterfeiting is high. The need to develop a method for rapid and precise identification of monoclonal antibodies is therefore urgent. For identification, analyses were performed with Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF-MS), Capillary Gel Electrophoresis (CGE) and Capillary Zone Electrophoresis (CZE) on nine monoclonal antibodies. The focus was to investigate whether significant physiochemical features and unique amino acid sequences were present and could be distinguished. Various analyses with MALDI-ToF-MS were used to both separate the monoclonal antibodies based on their physicochemical properties and annotate amino acid sequences containing key fragments. With the methods based on capillary electrophoresis, separation was also achieved. CZE is preferred over CGE as the amount of data obtained from CZE is greater and sample preparation is simpler. In summary, an identification process protocol was designed and is initiated with MALDI-ToF-MS analyses of reduced-form monoclonal antibodies against known references. A hypothesis is then formulated based on which antibodies look the most similar. Finally, these are analysed by CZE to determine the identity of the monoclonal antibody.
90

Vývoj analytických metod pro stanovení fosforylovaných složek bakteriálních buněčných membrán / Development of analytical methods for determination of phosphorylated components of bacterial cell membranes

Mikulecká, Jana January 2013 (has links)
Phospholipids are dominant components of bacterial cell membranes, where they create double layers. Bacteria differ in their phospholipid composition determination of which can help in identification of important groups of microorganisms. Phospholipid composition of bacteria is influenced by many environmental factors, therefore its variation can be observed within one bacterial stem also. Because of its simplicity, thin layer chromatography is usually applied to identification and determination of bacterial phospholipids. Disadvantage of this method are the high demands of time, carefulness and skills of the analytical personnel. The increasing interest in the phospholipid double-layer promotes the detailed investigation of their fatty acid composition because the more detailed analyses allows for more information yield about bacteria. Gas chromatography hyphenated with mass spectrometry seems to be the best choice for these purposes. Fatty acid identity and total fatty acid content in phospholipid molecules could be determined by this method. Additionally, number, position and isomerism of double bonds and presence of other functional groups on hydrocarbon chain could be determined. Whereas a suitable and...

Page generated in 0.0737 seconds