Spelling suggestions: "subject:"floquetengineering"" "subject:"biogeoengineering""
1 |
Many-Body Floquet Engineering in Periodically Driven Optical LatticesSträter, Christoph 08 February 2018 (has links) (PDF)
The present thesis is devoted to quantum simulation of strongly interacting systems of ultra-cold atoms in optical lattices. It is a theoretical work which focuses on the possibility to employ strong time-periodic forcing for the coherent control of these system. This form of quantum engineering is called Floquet engineering. Experimentally, time-periodic forcing has been successfully applied to realize a variety of physical models and phenomena, especially in the regime of weak interactions. We describe two novel proposals for interesting phenomena in the regime of strong interactions that rely on lattice shaking: melting of a Mott-insulator into an excited-state superfluid via coherent coupling of Bloch bands and the creation of 1D lattice anyons. Furthermore, the role of multiphoton excitations in a driven lattice is analyzed since these processes can lead to unwanted heating and thereby impeding of successful Floquet engineering in the experiment. The introductory Chapter 1 gives an overview over the field of quantum simulations with ultra-cold atoms in optical lattices and describes the experimental progress that has been made in the recent years. In Chapter 2, Floquet theory is reviewed, which provides an excellent framework to deal with time-periodic Hamiltonians and which is the basis of the analysis presented in the following chapters. Chapter 3 deals with the proposal of coherently coupling Bloch bands of an optical lattice via resonant lattice shaking. In particular, the orbital-driven phase transition from a Mott insulating to a superfluid ground state is described in detail. In Chapter 4, a proposal of realizing 1D lattice anyons from strongly interacting bosons in a shaken and tilted lattice is worked out. Furthermore, Friedel oscillations are proposed to provide a measurable real-space signature for the anyonization. Finally, in Chapter 5 multiphoton excitations to higher Bloch bands are analyzed for the cases of a shaken and an amplitude-modulated lattice. The strength and the location of resonances, which are associated with heating, are described theoretically and numerically. / Die vorliegende Arbeit behandelt Quantensimulationen von stark wechselwirkenden Systemen ultrakalter Atome in optischen Gittern. Dabei fokussiert sich diese theoretische Arbeit auf die Möglichkeit, diese Systeme mit Hilfe eines hochfrequenten Antriebs kohärent zu kontrollieren. Diese Form des Quantenengineering nennt man Floquet-Engineering. Experimentell wurden mit Hilfe eines zeitperiodischen Antriebs des optischen Gitters bereits viele physikalische Phänomene und Modelle realisiert, insbesondere im Bereich geringer Wechselwirkungen. Hier beschreiben wir zwei neue Vorschläge für interessante Phänomene im Bereich starker Wechselwirkungen, welche durch zeitperiodisches Gitterschütteln ermöglicht werden: Das Schmelzen eines Mott-Isolators in einen angeregte suprafluiden Zustand durch kohärentes Koppeln von Bloch-Bändern, sowie die Erzeugung von eindimensionalen Gitter-Anyonen. Außerdem wird die Rolle von Multiphoton-Übergängen in angetriebenen Gittern untersucht, da diese Prozesse zu ungewolltem Heizen und damit zur Verhinderung von erfolgreichem Floquet-Engineering führen können. Das einleitende Kapitel 1 gibt einen Überblick über das Feld der Quantensimulationen mit ultrakalten Atomen und beschreibt den experimentellen Fortschritt der letzten Jahre auf diesem Gebiet. In Kapitel 2 wird die Floquet-Theorie eingeführt, die einen exzellenten Rahmen dafür bietet zeitperiodische Hamiltonians zu behandeln und die Grundlage für die folgenden Kapitel ist. Kapitel 3 stellt den Vorschlag vor, Bloch-Bänder in optischen Gittern durch das Schütteln des Gitters kohärent miteinander zu koppeln. Insbesondere wird im Detail gezeigt, wie dieses Bandkoppeln zu einem orbital getriebenen Phasenübergang von einem Mott-Isolator zu einem Suprafluid führen kann. In Kapitel 4 wird der Vorschlag erläutert, wie eindimensionale Anyonen durch stark wechselwirkende Bosonen erzeugt werden können, indem das Gitter gekippt und geschüttelt wird. Außerdem wird vorgeschlagen, Friedel-Oszillationen im Ortsraum als im Experiment messbare Signatur für die Anyonisierung zu nutzen. Schließlich werden in Kapitel 5 Multiphoton-Übergänge in höhere Bloch-Bänder untersucht, im Falle eines geschüttelten und eines Amplitudenmodulierten Gitters. Die Stärke und die Lage der Resonanzen, welche zu Heizen führen, werden hierbei theoretisch und numerisch beschrieben.
|
2 |
Many-Body Floquet Engineering in Periodically Driven Optical LatticesSträter, Christoph 17 November 2017 (has links)
The present thesis is devoted to quantum simulation of strongly interacting systems of ultra-cold atoms in optical lattices. It is a theoretical work which focuses on the possibility to employ strong time-periodic forcing for the coherent control of these system. This form of quantum engineering is called Floquet engineering. Experimentally, time-periodic forcing has been successfully applied to realize a variety of physical models and phenomena, especially in the regime of weak interactions. We describe two novel proposals for interesting phenomena in the regime of strong interactions that rely on lattice shaking: melting of a Mott-insulator into an excited-state superfluid via coherent coupling of Bloch bands and the creation of 1D lattice anyons. Furthermore, the role of multiphoton excitations in a driven lattice is analyzed since these processes can lead to unwanted heating and thereby impeding of successful Floquet engineering in the experiment. The introductory Chapter 1 gives an overview over the field of quantum simulations with ultra-cold atoms in optical lattices and describes the experimental progress that has been made in the recent years. In Chapter 2, Floquet theory is reviewed, which provides an excellent framework to deal with time-periodic Hamiltonians and which is the basis of the analysis presented in the following chapters. Chapter 3 deals with the proposal of coherently coupling Bloch bands of an optical lattice via resonant lattice shaking. In particular, the orbital-driven phase transition from a Mott insulating to a superfluid ground state is described in detail. In Chapter 4, a proposal of realizing 1D lattice anyons from strongly interacting bosons in a shaken and tilted lattice is worked out. Furthermore, Friedel oscillations are proposed to provide a measurable real-space signature for the anyonization. Finally, in Chapter 5 multiphoton excitations to higher Bloch bands are analyzed for the cases of a shaken and an amplitude-modulated lattice. The strength and the location of resonances, which are associated with heating, are described theoretically and numerically. / Die vorliegende Arbeit behandelt Quantensimulationen von stark wechselwirkenden Systemen ultrakalter Atome in optischen Gittern. Dabei fokussiert sich diese theoretische Arbeit auf die Möglichkeit, diese Systeme mit Hilfe eines hochfrequenten Antriebs kohärent zu kontrollieren. Diese Form des Quantenengineering nennt man Floquet-Engineering. Experimentell wurden mit Hilfe eines zeitperiodischen Antriebs des optischen Gitters bereits viele physikalische Phänomene und Modelle realisiert, insbesondere im Bereich geringer Wechselwirkungen. Hier beschreiben wir zwei neue Vorschläge für interessante Phänomene im Bereich starker Wechselwirkungen, welche durch zeitperiodisches Gitterschütteln ermöglicht werden: Das Schmelzen eines Mott-Isolators in einen angeregte suprafluiden Zustand durch kohärentes Koppeln von Bloch-Bändern, sowie die Erzeugung von eindimensionalen Gitter-Anyonen. Außerdem wird die Rolle von Multiphoton-Übergängen in angetriebenen Gittern untersucht, da diese Prozesse zu ungewolltem Heizen und damit zur Verhinderung von erfolgreichem Floquet-Engineering führen können. Das einleitende Kapitel 1 gibt einen Überblick über das Feld der Quantensimulationen mit ultrakalten Atomen und beschreibt den experimentellen Fortschritt der letzten Jahre auf diesem Gebiet. In Kapitel 2 wird die Floquet-Theorie eingeführt, die einen exzellenten Rahmen dafür bietet zeitperiodische Hamiltonians zu behandeln und die Grundlage für die folgenden Kapitel ist. Kapitel 3 stellt den Vorschlag vor, Bloch-Bänder in optischen Gittern durch das Schütteln des Gitters kohärent miteinander zu koppeln. Insbesondere wird im Detail gezeigt, wie dieses Bandkoppeln zu einem orbital getriebenen Phasenübergang von einem Mott-Isolator zu einem Suprafluid führen kann. In Kapitel 4 wird der Vorschlag erläutert, wie eindimensionale Anyonen durch stark wechselwirkende Bosonen erzeugt werden können, indem das Gitter gekippt und geschüttelt wird. Außerdem wird vorgeschlagen, Friedel-Oszillationen im Ortsraum als im Experiment messbare Signatur für die Anyonisierung zu nutzen. Schließlich werden in Kapitel 5 Multiphoton-Übergänge in höhere Bloch-Bänder untersucht, im Falle eines geschüttelten und eines Amplitudenmodulierten Gitters. Die Stärke und die Lage der Resonanzen, welche zu Heizen führen, werden hierbei theoretisch und numerisch beschrieben.
|
3 |
Floquet engineering in periodically driven closed quantum systems: from dynamical localisation to ultracold topological matterBukov, Marin Georgiev 12 February 2022 (has links)
This dissertation presents a self-contained study of periodically-driven quantum systems. Following a brief introduction to Floquet theory, we introduce the inverse-frequency expansion, variants of which include the Floquet-Magnus, van Vleck, and Brillouin-Wigner expansions. We reveal that the convergence properties of these expansions depend strongly on the rotating frame chosen, and relate the former to the existence of Floquet resonances in the quasienergy spectrum. The theoretical design and experimental realisation (`engineering') of novel Floquet Hamiltonians is discussed introducing three universal high-frequency limits for systems comprising single-particle and many-body linear and nonlinear models. The celebrated Schrieffer-Wolff transformation for strongly-correlated quantum systems is generalised to periodically-driven systems, and a systematic approach to calculate higher-order corrections to the Rotating Wave Approximation is presented. Next, we develop Floquet adiabatic perturbation theory from first principles, and discuss extensively the adiabatic state preparation and the corresponding leading-order non-adiabatic corrections. Special emphasis is thereby put on geometrical and topological objects, such as the Floquet Berry curvature and the Floquet Chern number obtained within linear response in the presence of the drive. Last, pre-thermalisation and thermalisation in closed, clean periodically-driven quantum systems are studied in detail, with the focus put on the crucial role of Floquet many-body resonances for energy absorption.
|
4 |
Investigation on the two-dimensional electron gas in InAs quantum wells coupled to epitaxial aluminum for exploration of topological superconductivityTeng Zhang (11869115) 23 April 2024 (has links)
<p dir="ltr">The two-dimensional electron gas (2DEG) in shallow InAs quantum wells, combined with epitaxial aluminum, is commonly used to study topological superconductivity. Key features include strong spin-orbit coupling, a high effective g-factor, and the ability to manage proximity-induced superconductivity. My thesis discusses two aspects of this unique material. In the first section, I report on the transport characteristics of shallow InGaAs/InAs/InGaAs quantum wells and evaluate the effect of modulation doping on these shallow InAs quantum well structures. We systematically investigate the magnetotransport properties in relation to doping density and spacer thickness. Optimized samples show peak mobilities exceeding 100,000 cm<sup>2</sup>/Vs at n<sub>2DEG</sub> < 10<sup>12 </sup>cm<sup>-2</sup> in gated Hall bar, marking the highest mobility observed in this type of heterostructure. Our findings suggest that the doping layer moves the electron wave function away from the surface, minimizing surface scattering and enhancing mobility. This mobility improvement does not compromise Rashba spin-orbit coupling or induced superconductivity. In the second section, motivated by a theoretical study by Peng et al., we explore tunneling spectroscopy measurements on DC current biased planar Josephson junctions made on an undoped hybrid epitaxial Al-InAs 2DEG heterostructure. We observe four tunneling conductance peaks in the spectroscopy that can be adjusted by DC current bias. Our analysis indicates that these results come from strong coupling between the tunneling probe and the superconducting leads, rather than from Floquet engineering. We also touch on potential improvements to the device's design and materials. This work lays the groundwork for further investigation of Floquet physics in planar Josephson junctions. This thesis ends with a discussion of other unusual physics that could be explored in these novel shallow InAs quantum wells coupled with epitaxial aluminum.</p>
|
5 |
Topological Floquet states, artificial gauge fields in strongly correlated quantum fluids / États de Floquet topologiques, champs de jauge artificiels dans des fluides quantiques fortement corrélésPlekhanov, Kirill 07 September 2018 (has links)
Dans cette thèse nous abordons des aspects topologiques de la matière condensée. Les états topologiques sont insensibles à un large spectre des perturbations externes et au désordre – une propriété indispensable dans le domaine d'information quantique. L’effet des interactions dans des systèmes topologiques est pourtant loin d’être bien maîtrisé à ce jour. Dans ce travail, nous étudions la corrélation entre la description topologique et l'effet des interactions. Afin d'accomplir notre but, nous utilisons des méthodes analytiques et numériques. Nous nous intéressons aussi à des sondes expérimentales qui peuvent être utilisées pour vérifier nos prédictions théoriques. Tout d’abord, nous étudions la version bosonique en interactions du modèle de Haldane – le modèle célèbre qui décrit l’effet Hall anomal. Nous proposons son implémentation expérimentale dans des circuits quantiques, basée sur l’application de perturbation périodique dépendantes du temps – méthodologie qui s’appelle l’ingénierie de Floquet. En poursuivant ces idées, nous étudions la version bosonique du modèle de Kane-Mele d’un isolant topologique. Ce modèle possède un diagramme de phase très riche. En particulier, lorsque les interactions sont fortes, nous observons l’apparition d’un modèle de magnétisme frustrée présentant une variété d'états exotiques. La mise en œuvre de ces modèles dans des réseaux d'atomes ultra-froids ou des circuits quantiques permettra de sonder expérimentalement les propriétés exotiques que nous avons observées. Ensuite, nous abordons d’une manière plus détaillée la réalisation expérimentale des modèles topologiques dans des circuits quantiques, en considérant le cas particulier du modèle de Su-Schrieffer-Heeger en couplage fort. Nous testons aussi des nouvelles sondes qui peuvent être utilisées afin de mesurer la phase de Zak et en déduire la topologie du système. Finalement, nous nous intéressons aux sondes hors d’équilibre et des méthodes pour tester les propriétés spectrales de systèmes quantiques, en utilisant l’approche de purification, pertinent pour le numérique et les expériences. / In this thesis we study the topological aspects of condensed matter physics, that received a revolutionary development in the last decades. Topological states of matter are protected against perturbations and disorder, making them very promising in the context of quantum information. The interplay between topology and interactions in such systems is however far from being well understood, while the experimental realization is challenging. Thus, in this work we investigate analytically such strongly correlated states of matter and explore new protocols to probe experimentally their properties. In order to do this, we use various analytical and numerical techniques. First, we analyze the properties of an interacting bosonic version of the celebrated Haldane model – the model for the quantum anomalous Hall effect. We propose its quantum circuit implementation based on the application of periodic time-dependent perturbations – Floquet engineering. Continuing these ideas, we study the interacting bosonic version of the Kane-Mele model – the first model of a topological insulator. This model has a very rich phase diagram with an emergence of an effective frustrated magnetic model and a variety of symmetry broken spin states in the strongly interacting regime. Ultra-cold atoms or quantum circuits implementation of both Haldane and Kane-Mele bosonic models would allow for experimental probes of the exotic states we observed. Second, in order to deepen the perspectives of quantum circuit simulations of topological phases we analyze the strong coupling limit of the Su-Schrieffer-Heeger model and we test new experimental probes of its topology associated with the Zak phase. We also work on the out-of-equilibrium protocols to study bulk spectral properties of quantum systems and quantum phase transitions using a purification scheme which could be implemented both numerically and experimentally.
|
Page generated in 0.0939 seconds