Spelling suggestions: "subject:"monarch‘everglades.""
21 |
Analyzing Invasion Success of the Mayan Cichlid (Cichlasoma urophthalmus; Günther) in Southern FloridaHarrison, Elizabeth 19 February 2014 (has links)
Invasive species have caused billions of dollars in damages to their introduced environment through direct effects on wildlife and by altering their introduced habitats. For a species to be considered invasive, it must successfully navigate the stages of invasion: it must be introduced, become established, spread, and have a quantifiable impact on its introduced environment. The numbers of introductions and individuals released affects the genetic diversity of nonnative populations which, in turn, can affect their invasion success.
The Mayan Cichlid (Cichlasoma urophthalmus) is endemic to the Atlantic coast of Mexico and Central America. It was first detected in the United States in 1983 in Everglades National Park. Since then, it has spread across more than 70,000 hectares throughout southern and central Florida. I have established the Mayan Cichlid to be a successful invader in Florida by quantifying per capita negative impacts of Mayan Cichlids on densities of Sheepshead Minnow (Cyprinodon variegatus), Marsh Killifish (Fundulus confluentus), and Eastern Mosquitofish (Gambusia holbrooki) over a 15-year period. I also analyzed the role of genetics in the invasion success of the Mayan Cichlid. I used a mitochondrial gene, cytochrome b, and 17 microsatellite loci to identify the sources for the Mayan Cichlid introduction into Florida. Cytochrome b data supported an introduction from Guatemala; microsatellite data suggested movement of Mayan Cichlids from the upper Yucatán Peninsula to Guatemala and introductions from Guatemala and Belize to Florida. I also found evidence of cytonuclear disequilibrium together with low genetic diversity within the Florida population which indicate a population bottleneck and admixture between two distinct lineages upon introduction, followed by rapid spread resulting in a panmictic population genetically distinct from the native range populations. I found much less genetic structure and a weaker correlation between genetic diversity and geographic distance within Florida compared with Mexico and Central America. Low number of effective alleles, heterozygosities, and FST values and the genetic similarity of Florida sites also indicate an admixed population or one that has rapidly expanded from a small initial group.
|
22 |
Studies of specific gene expression of phosphate transporters in sawgrass (Cladium jamaicense crantz) and cattail (Typha domingensis pers.)Unknown Date (has links)
In the Florida Everglades, sawgrass has been displaced by cattail, predominantly resulting from phosphate enrichment. It has been found that phosphate transporters and arbuscular mycorrhizal (AM) fungi play an important role in phosphate uptake in the plants. This study aimed to reveal the symbiosis between AM fungi and sawgrass and cattail and identify the phosphate transporters, especially AM-specific phosphate transporters in these two species. AM colonization was only found in sawgrass roots, not cattail, at low phosphate concentrations in lab and field samples by trypan blue staining. AM fungi could increase sawgrass growth and had little effect on cattail growth. Four phosphate transporters were identified in sawgrass. CjPT1, CjPT2 and CjPT3 were expressed in roots and shoots independent of AM fungi and phosphate availability, while CjPT4 appeared to be an AM regulated phosphate transporter gene and its expression was induced by AM fungi. / by Li Lin. / Thesis (M.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
|
23 |
Determining the Effects of Fire on Ridge Shape Complexity In the Central EvergladesUnknown Date (has links)
Self-organized spatial patterning of microtopographic features is a trademark
characteristic of the Everglades landscape. Anthropogenic modifications to Everglades’
hydrology have reduced and degraded pattern, where ridges occur at higher elevations
and spread into open water sloughs under dryer conditions. Wildfire is an important
ecological force in the central Everglades and may maintain ridge-slough patterning
through reducing ridge size and complexity, and thus preserve habitat heterogeneity. To
investigate fire as a patterning mechanism in the central Everglades I examined the shape
complexity and area distribution of ridges along a chronosequence of time since fire.
Shape complexity did not change following fire, but small and large ridges became more
prominent and eventually spread as time since fire increased, suggesting fire may
maintain ridge area distribution. Documentation of fires’ effect on ridge size will inform
ecosystem and conceptual models detailing the complex interactions that maintain the
Everglades ridge-slough patterning. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
|
24 |
Drivers and Mechanisms of Peat Collapse in Coastal WetlandsWilson, Benjamin J 23 March 2018 (has links)
Coastal wetlands store immense amounts of carbon (C) in vegetation and sediments, but this store of C is under threat from climate change. Accelerated sea level rise (SLR), which leads to saltwater intrusion, and more frequent periods of droughts will both impact biogeochemical cycling in wetlands. Coastal peat marshes are especially susceptible to saltwater intrusion and changes in water depth, but little is known about how exposure to salinity affects organic matter accumulation and peat stability. I investigated freshwater and brackish marsh responses to elevated salinity, greater inundation, drought, and increased nutrient loading. Elevated salinity pulses in a brackish marsh increased CO2 release from the marsh but only during dry-down. Elevated salinity increased root mortality at both a freshwater and brackish marsh. Under continuously elevated salinity in mesocosms, net ecosystem productivity (NEP) was unaffected by elevated salinity in a freshwater marsh exposed to brackish conditions (0 à 8 ppt), but NEP significantly increased with P enrichment. Elevated salinity led to a higher turnover of live to dead roots, resulting in a ~2-cm loss in soil elevation within 1 year of exposure to elevated salinity. When exposing a brackish marsh to more saline conditions (10 à 20 ppt), NEP, aboveground biomass production, and root growth all significantly decreased with elevated salinity, shifting the marsh from a net C sink to a net C source to the atmosphere. Elevated salinity (10 à 20 ppt) did not increase soil elevation loss, which was already occurring under brackish conditions, but when coupled with a drought event, elevation loss doubled. My findings suggest these hypotheses for the drivers and mechanisms of peat collapse. When freshwater marshes are first exposed to elevated salinity, soil structure and integrity are negatively affected through loss of live roots within the soil profile, leaving the peat vulnerable to collapse even though aboveground productivity and NEP may be unaffected. Subsequent dry-down events where water falls below the soil surface further accelerate peat collapse. Although saltwater intrusion into freshwater wetlands may initially stimulate primary productivity through a P subsidy, the impact of elevated salinity on root and soil structure has a greater deleterious effect and may ultimately be the factors that lead to the collapse of these marshes.
|
25 |
Saltwater Intrusion and Vegetation Shifts Drive Changes in Carbon Storage in Coastal WetlandsCharles, Sean Patrick 27 June 2018 (has links)
Coastal wetlands protect coastlines through efficient storage of organic carbon (OC) that decreases wetland vulnerability to sea level rise (SLR). Accelerated SLR is driving saltwater intrusion and altering vegetation communities and biogeochemical conditions in coastal wetlands with uncertain implications. We quantified changes in OC stocks and fluxes driven by 1) saltwater and phosphorous intrusion on freshwater and brackish marshes, 2) vegetation along an experimental saltmarsh to mangrove gradient, 3) saltwater intrusion and vegetation change across a marsh to mangrove ecotone, and 4) vegetation change and mangrove forest development along a marsh to mangrove ecotone. Increasing salinity in freshwater marshes decreased root biomass and soil elevation within one year. In brackish marshes, increased salinity decreased root productivity and biomass and increased root breakdown rate (k), while added salinity did not increase elevation loss. In our experimental marsh-mangrove ecotone, mangrove vegetation promoted higher organic carbon (OC) storage by increasing above and belowground biomass and reducing organic matter k. However, mangroves also increased belowground k, and decreased allochthonous marine subsidies, indicating the potential for OC storage trade-offs. In the Southeast Everglades, we identified strong interior-coastal gradients in soil stoichiometry and mangrove cover. Interior freshwater soil conditions increased k, while total soil OC stocks decreased toward the coast indicating that saltwater intrusion is driving large scale soil OC loss. In the southeast Everglades, mangrove expansion increased root biomass and root productivity, but did not mitigate the overall loss of OC stocks toward the coast. Similarly, in the southwest Everglades, saltwater intrusion drove a decrease in soil OC. However, mangrove encroachment drove a rapid recovery and increased OC stocks. Mangrove encroachment doubled aboveground biomass within the last ten years, increased it 30 times in the last 30 years, and doubled belowground biomass after 20 years. Our research shows that 1) moderate saltwater intrusion without mangrove encroachment will lead to a loss in OC stocks and potentially lead to wetland elevation loss and submergence, 2) in the absence of a change in saltwater intrusion, mangrove expansion can enhance OC storage 3) mangrove expansion can mitigate OC loss during saltwater intrusion, but this pattern depends on mangrove recruitment and ecosystem productivity.
|
26 |
Sociocultural Complexities of Ecosystem Restoration: Remaking Identity, Landscape and Belonging in the Florida EvergladesGarvoille, Rebecca I. 26 March 2013 (has links)
The Florida Everglades is a highly diverse socionatural landscape that historically spanned much of the south Florida peninsula. Today, the Florida Everglades is an iconic but highly contested conservation landscape. It is the site of one of the world’s largest publicly funded ecological restoration programs, estimated to cost over $8 billion (U.S. GAO 2007), and it is home to over two million acres of federally protected lands, including the Big Cypress National Preserve and Everglades National Park. However, local people’s values, practices and histories overlap and often conflict with the global and eco-centric values linked to Everglades environmental conservation efforts, sparking environmental conflict.
My dissertation research examined the cultural politics of nature associated with two Everglades conservation and ecological restoration projects: 1) the creation and stewardship of the Big Cypress National Preserve, and 2) the Tamiami Trail project at the northern boundary of Everglades National Park. Using multiple research methods including ethnographic fieldwork, archival research, participant observation, surveys and semi-structured interviews, I documented how these two projects have shaped environmental claims-making strategies to Everglades nature on the part of environmental NGOs, the National Park Service and local white outdoorsmen. In particular, I examined the emergence of an oppositional white identity called the Gladesmen Culture. My findings include the following: 1) just as different forms of nature are historically produced, contingent and power-laden, so too are different claims to Everglades nature; 2) identity politics are an integral dimension of Everglades environmental conflicts; and 3) the Big Cypress region’s history and contemporary conflicts are shaped by the broader political economy of development in south Florida.
My dissertation concluded that identity politics, class and property relations have played a key, although not always obvious, role in shaping Everglades history and environmental claims-making, and that they continue to influence contemporary Everglades environmental conflicts.
|
27 |
EVALUATING UNMANNED AIRCRAFT SYSTEM PHOTOGRAMMETRY FOR COASTAL FLORIDA EVERGLADES RESTORATION AND MANAGEMENTUnknown Date (has links)
The Florida Everglades ecosystem is experiencing increasing threats from anthropogenic modification of water flow, spread of invasive species, sea level rise (SLR), and more frequent and/or intense hurricanes. Restoration efforts aimed at rehabilitating these ongoing and future disturbances are currently underway through the implementation of the Comprehensive Everglades Restoration Plan (CERP). Efficacy of these restoration activities can be further improved with accurate and site-specific information on the current state of the coastal wetland habitats. In order to produce such assessments, digital datasets of the appropriate accuracy and scale are needed. These datasets include orthoimagery to delineate wetland areas and map vegetation cover as well as accurate 3-dimensional (3-D) models to characterize hydrology, physiochemistry, and habitat vulnerability. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
|
28 |
Biogenic gas dynamics in peat soil blocks using ground penetrating radar: a comparative study in the laboratory between peat soils from the Everglades and from two northern peatlands in Minnesota and MaineUnknown Date (has links)
Peatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane (CH4) and carbon dioxide (CO2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison between gas dynamics (i.e. build-up and release) of four different types of peat soil using GPR. Peat soil blocks were collected at peatlands with contrasting latitudes, including the Everglades, Maine and Minnesota. A unique two-antenna GPR setup was used to monitor biogenic gas buildup and ebullition events over a period of 4.5 months, constraining GPR data with surface deformation measurements and direct CH4 and CO2 concentration measurements. The effect of atmospheric pressure was also investigated. This study has implications for better understanding global gas dynamics and carbon cycling in peat soils and its role in climate change. / by Anastasija Cabolova. / Thesis (M.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
|
Page generated in 0.0451 seconds