• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Chování nových typů materiálových modelů ve squeeze flow geometrii / Behaviour of new types of material models in a squeeze flow geometry

Řehoř, Martin January 2012 (has links)
Investigation of material behaviour in a squeeze flow geometry provides an impor- tant technique in rheology and it is relevant also from the technological point of view (some types of dampers, compression moulding). To our best knowledge, the sque- eze flow has not been solved for fluids-like materials with pressure-dependent material moduli. In the main scope of the present thesis, an incompressible fluid whose visco- sity strongly depends on the pressure is studied in both the perfect-slip and the no-slip squeeze flow. It is shown that such a material model can provide interesting departures compared to the classical model for viscous (Navier-Stokes) fluid even on the level of analytical solutions, which are obtained using some physically relevant simplificati- ons. Numerical simulation of a free boundary problem for the no-slip squeeze flow is then developed in the thesis using body-fitted curvilinear coordinates and spectral collocation method. An interesting behaviour is expected especially in the corners of the computational domain where the stress singularities are normally located. Unfor- tunately, numerical results reveal some fundamental drawbacks related to the physical model and its possible improvement is discussed at the end of the thesis.
12

Mems sensors in hydraulics, an opportunity to create smart components

Massarotti, Giorgio, Ferrari, Cristian, Macia, Esteban Codina, Ruggeri, Massimiliano 26 June 2020 (has links)
Modern electronic technologies allow for the design and production of Micro Electro-Mechanical Systems, also called MEMS. These microchips are widely used as sensors in many fields of application, also in embedded systems in heavy-duty and agricultural vehicles and in automotive applications. In addition to the classic uses of these sensors, new architectures and sensor topologies exploit electromechanical principles of great interest for the field of hydraulic applications. This paper presents some examples of the application of a new MEMS architecture based on self-oscillating microresonators, which offer interesting capabilities in the measurement of mechanical deformation of mechanical components. MEMS are applied as non-invasive pressure and oil flow sensors, and represent an interesting option for creating smart components. All the applications described are intended to show the sensor potential and have a qualitative and exemplary character, but they can provide a basis for in-depth studies on the potential and applicability of these sensors.
13

Simulador de escoamento multif?sico em po?os de petr?leo (SEMPP)

Nascimento, Julio Cesar Santos 07 February 2013 (has links)
Made available in DSpace on 2014-12-17T14:08:52Z (GMT). No. of bitstreams: 1 JulioCSN_DISSERT.pdf: 2712130 bytes, checksum: ee800f3d5f68d01d1d955c026ae1891b (MD5) Previous issue date: 2013-02-07 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The multiphase flow occurrence in the oil and gas industry is common throughout fluid path, production, transportation and refining. The multiphase flow is defined as flow simultaneously composed of two or more phases with different properties and immiscible. An important computational tool for the design, planning and optimization production systems is multiphase flow simulation in pipelines and porous media, usually made by multiphase flow commercial simulators. The main purpose of the multiphase flow simulators is predicting pressure and temperature at any point at the production system. This work proposes the development of a multiphase flow simulator able to predict the dynamic pressure and temperature gradient in vertical, directional and horizontal wells. The prediction of pressure and temperature profiles was made by numerical integration using marching algorithm with empirical correlations and mechanistic model to predict pressure gradient. The development of this tool involved set of routines implemented through software programming Embarcadero C++ Builder? 2010 version, which allowed the creation of executable file compatible with Microsoft Windows? operating systems. The simulator validation was conduct by computational experiments and comparison the results with the PIPESIM?. In general, the developed simulator achieved excellent results compared with those obtained by PIPESIM and can be used as a tool to assist production systems development / Na ind?stria do petr?leo a ocorr?ncia de escoamento multif?sico ? comum em todo o percurso dos fluidos, durante a produ??o, transporte e refino. O escoamento multif?sico ? definido como o escoamento simult?neo composto por duas ou mais fases com propriedades diferentes e imisc?veis. Uma importante ferramenta computacional para o dimensionamento, planejamento e otimiza??o de sistemas de produ??o ? a simula??o de escoamento multif?sico em dutos e meios porosos, normalmente, feita por simuladores comerciais. O objetivo b?sico desses simuladores ? prever a press?o e temperatura em diferentes pontos do sistema de produ??o. Este trabalho prop?e o desenvolvimento de um simulador de escoamento multif?sico em po?os verticais, direcionais e horizontais, capaz de determinar o gradiente din?mico de press?o e temperatura. A determina??o dos perfis de press?o e de temperatura foi feita por meio de integra??o num?rica utilizando o algoritmo de marcha com correla??es emp?ricas e modelo mecanicista para determinar o gradiente de press?o. O desenvolvimento do simulador envolveu o conjunto de rotinas implementadas atrav?s do software de programa??o Embarcadero C++ Builder? vers?o 2010, que permitiu a cria??o de arquivo execut?vel compat?vel com os sistemas operacionais da Microsoft Windows?. A valida??o do simulador foi conduzida por experimentos computacionais e compara??o dos resultados com o simulador de uso comercial PIPESIM?. De modo geral, o simulador desenvolvido alcan?ou excelentes resultados quando comparado com os obtidos pelo PIPESIM, podendo ser utilizado como ferramenta para auxiliar no desenvolvimento de sistemas de produ??o
14

Controle autom?tico para inje??o otimizada de g?s em po?os de petr?leo equipados para funcionamento com g?s lift cont?nuo

Spindola, Rafael Barbosa 16 July 2003 (has links)
Made available in DSpace on 2014-12-17T14:56:21Z (GMT). No. of bitstreams: 1 RafaelBS.pdf: 1607732 bytes, checksum: d5ad875fd4dc09637b9932966f4df8c0 (MD5) Previous issue date: 2003-07-16 / The continuous gas lift method is the main artificial lifting method used in the oil industry for submarine wells, due to its robustness and the large range of flow rate that the well might operate. Nowadays, there is a huge amount of wells producing under this mechanism. This method of elevation has a slow dynamics due to the transients and a correlation between the injected gas rate and the of produced oil rate. Electronics controllers have been used to adjust many parameters of the oil wells and also to improve the efficiency of the gas lift injection system. This paper presents a intelligent control system applied to continuous gas injection in wells, based in production s rules, that has the target of keeping the wells producing during the maximum period of time, in its best operational condition, and doing automatically all necessary adjustments when occurs some disturbance in the system. The author also describes the application of the intelligent control system as a tool to control the flow pressure in the botton of the well (Pwf). In this case, the control system actuates in the surface control valve / O m?todo de eleva??o por g?s lift cont?nuo ? o principal m?todo de eleva??o artificial utilizado, principalmente, para produ??o em po?os submarinos devido a sua robustez e a larga faixa de vaz?o que o po?o pode produzir. H? um grande percentual de po?os produzindo sob este mecanismo no Brasil. Este tipo de m?todo de eleva??o apresenta algumas caracter?sticas pr?prias, sendo uma delas sua din?mica lenta devido aos transientes e outra ? a exist?ncia de uma correla??o entre a vaz?o de g?s injetado e a vaz?o de ?leo produzido. Controladores eletr?nicos t?m sido utilizados para realizar ajustes em alguns par?metros do po?o e melhorar a efici?ncia de inje??o de g?s lift. Este trabalho apresenta um sistema inteligente de controle autom?tico da inje??o de g?s, baseando-se em regras de produ??o, que busca manter os po?os equipados para g?s lift cont?nuo produzindo o maior tempo poss?vel, nas condi??es ?timas de opera??o e que faz os ajustes autom?ticos necess?rios quando ocorre alguma perturba??o no sistema. Mostra-se que ? poss?vel, utilizando o sistema inteligente apresentado, exercer o controle da press?o de fluxo no fundo do po?o (Pwf) atrav?s da manipula??o da abertura da v?lvula de controle de superf?cie
15

Experimental Aerothermal Performance of Turbofan Bypass Flow Heat Exchangers

Villafañe Roca, Laura 07 January 2014 (has links)
The path to future aero-engines with more efficient engine architectures requires advanced thermal management technologies to handle the demand of refrigeration and lubrication. Oil systems, holding a double function as lubricant and coolant circuits, require supplemental cooling sources to the conventional fuel based cooling systems as the current oil thermal capacity becomes saturated with future engine developments. The present research focuses on air/oil coolers, which geometrical characteristics and location are designed to minimize aerodynamic effects while maximizing the thermal exchange. The heat exchangers composed of parallel fins are integrated at the inner wall of the secondary duct of a turbofan. The analysis of the interaction between the three-dimensional high velocity bypass flow and the heat exchangers is essential to evaluate and optimize the aero-thermodynamic performances, and to provide data for engine modeling. The objectives of this research are the development of engine testing methods alternative to flight testing, and the characterization of the aerothermal behavior of different finned heat exchanger configurations. A new blow-down wind tunnel test facility was specifically designed to replicate the engine bypass flow in the region of the splitter. The annular sector type test section consists on a complex 3D geometry, as a result of three dimensional numerical flow simulations. The flow evolves over the splitter duplicated at real scale, guided by helicoidally shaped lateral walls. The development of measurement techniques for the present application involved the design of instrumentation, testing procedures and data reduction methods. Detailed studies were focused on multi-hole and fine wire thermocouple probes. Two types of test campaigns were performed dedicated to: flow measurements along the test section for different test configurations, i.e. in the absence of heat exchangers and in the presence of different heat exchanger geometries, and heat transfer measurements on the heat exchanger. As a result contours of flow velocity, angular distributions, total and static pressures, temperatures and turbulence intensities, at different bypass duct axial positions, as well as wall pressures along the test section, were obtained. The analysis of the flow development along the test section allowed the understanding of the different flow behaviors for each test configuration. Comparison of flow variables at each measurement plane permitted quantifying and contrasting the different flow disturbances. Detailed analyses of the flow downstream of the heat exchangers were assessed to characterize the flow in the fins¿ wake region. The aerodynamic performance of each heat exchanger configuration was evaluated in terms of non dimensional pressure losses. Fins convective heat transfer characteristics were derived from the infrared fin surface temperature measurements through a new methodology based on inverse heat transfer methods coupled with conductive heat flux models. The experimental characterization permitted to evaluate the cooling capacity of the investigated type of heat exchangers for the design operational conditions. Finally, the thermal efficiency of the heat exchanger at different points of the flight envelope during a typical commercial mission was estimated by extrapolating the convective properties of the flow to flight conditions. / Villafañe Roca, L. (2013). Experimental Aerothermal Performance of Turbofan Bypass Flow Heat Exchangers [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34774

Page generated in 0.1989 seconds