• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flow forming of aeroengine materials

Kubilay, Ceylan January 2014 (has links)
Flow forming is a fairly new technique used for the production of dimensionally accurate near net shaped hollow components. The process has many advantages such as cost effectiveness and eliminating further operations like welding, machining, etc. This study focuses on the characterization of flow formed components to understand the process. Flow formed components are composed of different reductions and characterization techniques are applied to reveal the resulting microstructural differences. Effect of number of passes on the material is also investigated. Metallographic analysis was conducted by optical microscope, electron micro probe analyser (EPMA) and the electron back scatter diffraction technique (EBSD) in a scanning electron microscope (SEM). Texture evolution of the samples was examined either by laboratory X-ray diffraction or EBSD technique. Furthermore, residual stresses were measured by neutron diffraction (at StrainAnalyzer for Large and Small Scale Engineering Applications (SALSA) and PulseOverlap Diffractometer (POLDI) instruments), laboratory X-ray diffraction and hole drilling. Stress relief heat treatments were carried out at 500°C for either 4 or 16 hours to mitigate residual stresses without losing much of the strength. The experiments conducted show that flow forming is a process resulting in heterogeneous microstructure with grains elongated along the deformation direction. Texture evolution is different from the typical rolling of steels with body centred cubic crystal structure. Any significant effect of the number of passes was not observed. Due to the nature of the process, residual stresses in the axial and hoop directions are critical. Therefore, stress distributions through thickness of the samples are plotted. It is observed that in the thick section, the stresses are higher. Heat treatments applied at 500°C for 4 or 16 hours are effective in diminishing the stresses.
2

Modeling of Cylindrical Flow Forming Processes with Numerical and Elementary Methods

Kleditzsch, Stefan, Awiszus, Birgit 23 October 2012 (has links) (PDF)
With flow forming – an incremental forming process – the final geometry of a component is achieved by a multitude of minor sequential forming steps. Due to this incremental characteristic associated with the variable application of the tools and kinematic shape forming, it is mainly suitable for small and medium quantities. For the extensive use of the process it is necessary to have appropriate simulation tools. While the Finite-Element-Analysis (FEA) is an acknowledged simulation tool for the modeling and optimization of forming technology, the use of FEA for the incremental forming processes is associated with very long computation times. For this reason a simulation method called FloSim, based on the upper bound method, was developed for cylindrical flow forming processes at the Chair of Virtual Production Engineering, which allows the simulation of the process within a few minutes. This method was improved by the work presented with the possibility of geometry computation during the process.
3

Beitrag zur Modellierung und Simulation von Zylinderdrückwalzprozessen mit elementaren Methoden

Kleditzsch, Stefan 10 February 2014 (has links) (PDF)
Drückwalzen als inkrementelles Umformverfahren ist aufgrund seiner Verfahrenscharakteristik mit sehr hohen Rechenzeiten bei der Finite-Elemente-Methode (FEM) verbunden. Die Modelle ModIni und FloSim sind zwei analytisch-elementare Ansätze, um dieser Prämisse entgegenzuwirken. Das für ModIni entwickelte Geometriemodell wird in der vorliegenden Arbeit weiterentwickelt, so dass eine werkstoffunabhängige Berechnung der Staugeometrie ermöglicht wird und ein deutlich größeres Anwendungsspektrum der Methode bereitsteht. Die Simulationsmethode FloSim basiert auf dem oberen Schrankenverfahren und ermöglicht somit eine Berechnung von Zylinderdrückwalzprozessen innerhalb weniger Minuten. Für die Optimierung der Methode FloSim wurden in der vorliegenden Arbeit die analytischen Grundlagen für die Berechnung der Bauteillänge sowie der Umformzonentemperatur während des Prozesses erarbeitet. Weiterhin wurde auf Basis von numerisch realisierten Parameteranalysen ein Ansatz für die analytische Berechnung des Vergleichsumformgrades von Drückwalzprozessen entwickelt. Diese drei Ansätze, zu Bauteillänge, Temperatur und Umformgrad wurden in die Simulationssoftware FloSim integriert und führen zu einer deutlichen Genauigkeitssteigerung der Methode. / Flow Forming as incremental forming process is connected with extreme long computation times for Finite-Element-Analyses. ModIni and FloSim are two analytical/elementary models to antagonize this situation. The geometry model, which was developed for ModIni, is improved within the presented work. The improvement enables the material independent computation of the pile-up geometry and permits a wider application scope of ModIni. The simulation method FloSim is based on the upper bound method, which enables the computation of cylindrical Flow Forming processes within minutes. For the optimization of the method FloSim, the basics for the analytical computation of the workpiece length during the process and the computation of the forming zone temperature were developed within this work. Fur-thermore, an analytical approach for the computation of the equivalent plastic strain of cylindrical Flow Forming processes was developed based on numerical parameter analyses. This tree approaches for computing the workpiece length, the temperature and the equivalent plastic strain were integrated in FloSim and lead to an increased accuracy.
4

Modeling of Cylindrical Flow Forming Processes with Numerical and Elementary Methods

Kleditzsch, Stefan, Awiszus, Birgit 23 October 2012 (has links)
With flow forming – an incremental forming process – the final geometry of a component is achieved by a multitude of minor sequential forming steps. Due to this incremental characteristic associated with the variable application of the tools and kinematic shape forming, it is mainly suitable for small and medium quantities. For the extensive use of the process it is necessary to have appropriate simulation tools. While the Finite-Element-Analysis (FEA) is an acknowledged simulation tool for the modeling and optimization of forming technology, the use of FEA for the incremental forming processes is associated with very long computation times. For this reason a simulation method called FloSim, based on the upper bound method, was developed for cylindrical flow forming processes at the Chair of Virtual Production Engineering, which allows the simulation of the process within a few minutes. This method was improved by the work presented with the possibility of geometry computation during the process.:Introduction FEM-Simulation The FloSim Model Computation of the Workpiece length Results Conclusion
5

Beitrag zur Modellierung und Simulation von Zylinderdrückwalzprozessen mit elementaren Methoden

Kleditzsch, Stefan 29 January 2014 (has links)
Drückwalzen als inkrementelles Umformverfahren ist aufgrund seiner Verfahrenscharakteristik mit sehr hohen Rechenzeiten bei der Finite-Elemente-Methode (FEM) verbunden. Die Modelle ModIni und FloSim sind zwei analytisch-elementare Ansätze, um dieser Prämisse entgegenzuwirken. Das für ModIni entwickelte Geometriemodell wird in der vorliegenden Arbeit weiterentwickelt, so dass eine werkstoffunabhängige Berechnung der Staugeometrie ermöglicht wird und ein deutlich größeres Anwendungsspektrum der Methode bereitsteht. Die Simulationsmethode FloSim basiert auf dem oberen Schrankenverfahren und ermöglicht somit eine Berechnung von Zylinderdrückwalzprozessen innerhalb weniger Minuten. Für die Optimierung der Methode FloSim wurden in der vorliegenden Arbeit die analytischen Grundlagen für die Berechnung der Bauteillänge sowie der Umformzonentemperatur während des Prozesses erarbeitet. Weiterhin wurde auf Basis von numerisch realisierten Parameteranalysen ein Ansatz für die analytische Berechnung des Vergleichsumformgrades von Drückwalzprozessen entwickelt. Diese drei Ansätze, zu Bauteillänge, Temperatur und Umformgrad wurden in die Simulationssoftware FloSim integriert und führen zu einer deutlichen Genauigkeitssteigerung der Methode. / Flow Forming as incremental forming process is connected with extreme long computation times for Finite-Element-Analyses. ModIni and FloSim are two analytical/elementary models to antagonize this situation. The geometry model, which was developed for ModIni, is improved within the presented work. The improvement enables the material independent computation of the pile-up geometry and permits a wider application scope of ModIni. The simulation method FloSim is based on the upper bound method, which enables the computation of cylindrical Flow Forming processes within minutes. For the optimization of the method FloSim, the basics for the analytical computation of the workpiece length during the process and the computation of the forming zone temperature were developed within this work. Fur-thermore, an analytical approach for the computation of the equivalent plastic strain of cylindrical Flow Forming processes was developed based on numerical parameter analyses. This tree approaches for computing the workpiece length, the temperature and the equivalent plastic strain were integrated in FloSim and lead to an increased accuracy.
6

Entwicklung des selbstregelnden Drückwalzens

Laue, Robert 18 January 2024 (has links)
Die Verbesserung der Energie- und Ressourceneffizienz stellt eine zentrale Aufgabe für die Produktionstechnik dar. Inkrementelle Verfahren wie das Drückwalzen weisen bereits aufgrund ihres Prozessprinzips ein hohes Potenzial zur Ressourceneffizienz auf. Allerdings besitzen diese Verfahren eine Vielzahl von Einflussfaktoren auf das Prozessergebnis, die zudem in Wechselwirkung zueinander stehen. Die Folge schwankender Prozesseinflussgrößen (z. B. Chargenschwankungen oder variierende Halbzeuggeometrie) ist häufig Bauteilausschuss, der sich aufgrund der meist kleinen bis mittleren Losgrößen stärker auf die Produktivität auswirkt. Die Weiterentwicklung von gesteuerten zu selbstgeregelten Umformprozessen mit Prozessrückkopplung bietet ein großes Potential zur Verbesserung der Ressourceneffizienz. Im Rahmen dieser Arbeit werden die Grundlagen und Vorgehensweise zur Realisierung des selbstregelnden Drückwalzens erarbeitet. Nach der Analyse und Bewertung von Störungen auf die Prozesseinflussgrößen erfolgt die Definition eines Referenzzustandes und von Störszenarien. Auf Basis experimenteller Untersuchungen wird der Referenzzustand analysiert und ein digitaler Zwilling des Drückwalzprozesses entwickelt. Mit dessen Hilfe erfolgt die Bewertung der Störszenarien. Anschließend wird ein methodisches Vorgehen vorgestellt, mit dem das selbstregelnde Drückwalzen beliebiger Zielgrößen entwickelt werden kann. Im digitalen Zwilling werden zusätzlich ein virtueller Sensor, der Regelalgorithmus und die Aktordynamik integriert und damit die Selbstregelung für eine Prozessgröße und ein Prozessergebnis ausgelegt und untersucht. Mit den gewonnenen Erkenntnissen wurde das selbstregelnde Drückwalzen erstmals erfolgreich experimentell umgesetzt. Die in der Arbeit vorgestellten Ergebnisse zeigen eine signifikante Reduzierung des Einflusses von Prozessstörungen auf das Prozessergebnis durch die Selbstregelung. / Improving energy and resource efficiency is also a key challenge for production technology. Incremental processes such as flow-forming already have a high potential for resource efficiency due to their process principle. Flow-forming has a large number of influencing process parameters that also interact with each other. Fluctuating process parameters (e.g. batch fluctuations or varying semi-finished product geometry) can result in component scrap, which has a major influence on productivity due to the mostly small to medium batch sizes. The further development of controlled to self-controlled forming processes with process feed-back offers great potential for improving resource efficiency. In this thesis, the basics and the procedure for the realization of self-controlled flow-forming are developed. After the analysis and evaluation of disturbances on the process influencing variables, a reference state and disturbance scenarios are defined. The reference state is analyzed on the basis of experimental investigations and a digital twin of the flow-forming process is developed. This is used to evaluate the disturbance scenarios. Subsequently, a methodical procedure is presented to develop self-controlled flow-forming of any process parameter or process result. A virtual sensor, the control algorithm and the actuator dynamics are also integrated into the digital twin to design and investigate the self-control for a process parameter and a process result. Based on the knowledge gained, self-controlled flow-forming was successfully implemented experimentally for the first time. The results show a significant reduction of the influence of process disturbances on the process results.

Page generated in 0.0791 seconds