• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of Cylindrical Flow Forming Processes with Numerical and Elementary Methods

Kleditzsch, Stefan, Awiszus, Birgit 23 October 2012 (has links) (PDF)
With flow forming – an incremental forming process – the final geometry of a component is achieved by a multitude of minor sequential forming steps. Due to this incremental characteristic associated with the variable application of the tools and kinematic shape forming, it is mainly suitable for small and medium quantities. For the extensive use of the process it is necessary to have appropriate simulation tools. While the Finite-Element-Analysis (FEA) is an acknowledged simulation tool for the modeling and optimization of forming technology, the use of FEA for the incremental forming processes is associated with very long computation times. For this reason a simulation method called FloSim, based on the upper bound method, was developed for cylindrical flow forming processes at the Chair of Virtual Production Engineering, which allows the simulation of the process within a few minutes. This method was improved by the work presented with the possibility of geometry computation during the process.
2

Beitrag zur Modellierung und Simulation von Zylinderdrückwalzprozessen mit elementaren Methoden

Kleditzsch, Stefan 10 February 2014 (has links) (PDF)
Drückwalzen als inkrementelles Umformverfahren ist aufgrund seiner Verfahrenscharakteristik mit sehr hohen Rechenzeiten bei der Finite-Elemente-Methode (FEM) verbunden. Die Modelle ModIni und FloSim sind zwei analytisch-elementare Ansätze, um dieser Prämisse entgegenzuwirken. Das für ModIni entwickelte Geometriemodell wird in der vorliegenden Arbeit weiterentwickelt, so dass eine werkstoffunabhängige Berechnung der Staugeometrie ermöglicht wird und ein deutlich größeres Anwendungsspektrum der Methode bereitsteht. Die Simulationsmethode FloSim basiert auf dem oberen Schrankenverfahren und ermöglicht somit eine Berechnung von Zylinderdrückwalzprozessen innerhalb weniger Minuten. Für die Optimierung der Methode FloSim wurden in der vorliegenden Arbeit die analytischen Grundlagen für die Berechnung der Bauteillänge sowie der Umformzonentemperatur während des Prozesses erarbeitet. Weiterhin wurde auf Basis von numerisch realisierten Parameteranalysen ein Ansatz für die analytische Berechnung des Vergleichsumformgrades von Drückwalzprozessen entwickelt. Diese drei Ansätze, zu Bauteillänge, Temperatur und Umformgrad wurden in die Simulationssoftware FloSim integriert und führen zu einer deutlichen Genauigkeitssteigerung der Methode. / Flow Forming as incremental forming process is connected with extreme long computation times for Finite-Element-Analyses. ModIni and FloSim are two analytical/elementary models to antagonize this situation. The geometry model, which was developed for ModIni, is improved within the presented work. The improvement enables the material independent computation of the pile-up geometry and permits a wider application scope of ModIni. The simulation method FloSim is based on the upper bound method, which enables the computation of cylindrical Flow Forming processes within minutes. For the optimization of the method FloSim, the basics for the analytical computation of the workpiece length during the process and the computation of the forming zone temperature were developed within this work. Fur-thermore, an analytical approach for the computation of the equivalent plastic strain of cylindrical Flow Forming processes was developed based on numerical parameter analyses. This tree approaches for computing the workpiece length, the temperature and the equivalent plastic strain were integrated in FloSim and lead to an increased accuracy.
3

Modeling of Cylindrical Flow Forming Processes with Numerical and Elementary Methods

Kleditzsch, Stefan, Awiszus, Birgit 23 October 2012 (has links)
With flow forming – an incremental forming process – the final geometry of a component is achieved by a multitude of minor sequential forming steps. Due to this incremental characteristic associated with the variable application of the tools and kinematic shape forming, it is mainly suitable for small and medium quantities. For the extensive use of the process it is necessary to have appropriate simulation tools. While the Finite-Element-Analysis (FEA) is an acknowledged simulation tool for the modeling and optimization of forming technology, the use of FEA for the incremental forming processes is associated with very long computation times. For this reason a simulation method called FloSim, based on the upper bound method, was developed for cylindrical flow forming processes at the Chair of Virtual Production Engineering, which allows the simulation of the process within a few minutes. This method was improved by the work presented with the possibility of geometry computation during the process.:Introduction FEM-Simulation The FloSim Model Computation of the Workpiece length Results Conclusion
4

Beitrag zur Modellierung und Simulation von Zylinderdrückwalzprozessen mit elementaren Methoden

Kleditzsch, Stefan 29 January 2014 (has links)
Drückwalzen als inkrementelles Umformverfahren ist aufgrund seiner Verfahrenscharakteristik mit sehr hohen Rechenzeiten bei der Finite-Elemente-Methode (FEM) verbunden. Die Modelle ModIni und FloSim sind zwei analytisch-elementare Ansätze, um dieser Prämisse entgegenzuwirken. Das für ModIni entwickelte Geometriemodell wird in der vorliegenden Arbeit weiterentwickelt, so dass eine werkstoffunabhängige Berechnung der Staugeometrie ermöglicht wird und ein deutlich größeres Anwendungsspektrum der Methode bereitsteht. Die Simulationsmethode FloSim basiert auf dem oberen Schrankenverfahren und ermöglicht somit eine Berechnung von Zylinderdrückwalzprozessen innerhalb weniger Minuten. Für die Optimierung der Methode FloSim wurden in der vorliegenden Arbeit die analytischen Grundlagen für die Berechnung der Bauteillänge sowie der Umformzonentemperatur während des Prozesses erarbeitet. Weiterhin wurde auf Basis von numerisch realisierten Parameteranalysen ein Ansatz für die analytische Berechnung des Vergleichsumformgrades von Drückwalzprozessen entwickelt. Diese drei Ansätze, zu Bauteillänge, Temperatur und Umformgrad wurden in die Simulationssoftware FloSim integriert und führen zu einer deutlichen Genauigkeitssteigerung der Methode. / Flow Forming as incremental forming process is connected with extreme long computation times for Finite-Element-Analyses. ModIni and FloSim are two analytical/elementary models to antagonize this situation. The geometry model, which was developed for ModIni, is improved within the presented work. The improvement enables the material independent computation of the pile-up geometry and permits a wider application scope of ModIni. The simulation method FloSim is based on the upper bound method, which enables the computation of cylindrical Flow Forming processes within minutes. For the optimization of the method FloSim, the basics for the analytical computation of the workpiece length during the process and the computation of the forming zone temperature were developed within this work. Fur-thermore, an analytical approach for the computation of the equivalent plastic strain of cylindrical Flow Forming processes was developed based on numerical parameter analyses. This tree approaches for computing the workpiece length, the temperature and the equivalent plastic strain were integrated in FloSim and lead to an increased accuracy.

Page generated in 0.0716 seconds