• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchung des zyklisch plastischen Werkstoffverhaltens unter umformnahen Bedingungen

Hahn, Frank 20 May 2003 (has links) (PDF)
Bei den Verfahren der partiellen Massivumformung, wie dem Bohrungsdrücken, erfährt der Werkstoff eine zyklische Plastifizierung. Dabei bedeutet „zyklisch“ einerseits, dass jedes Werkstoffsegment nur temporär im Umformeingriff ist und dass andererseits der Werkstoff alternierend plastifiziert wird. Inhalt der Arbeit ist die Beschreibung der Geometrie der Umformzone beim Bohrungsdrücken mit Hilfe der Computertomographie und die Untersuchung des zyklisch plastischen Werkstoffverhaltens mit verbleibendem Umforminkrement pro Umformzyklus an Hand von Torsionsuntersuchungen. Mit der Computertomographie ist es gelungen, eine Umformzone bei der partiellen Massivumformung zerstörungsfrei zu analysieren. Die Umformzone kann in zwei Verformungsbereiche aufgeteilt werden. Im Stempelbereich wird der Werkstoff unter einem hohen hydrostatischen Druckspannungsanteil einsinnig plastisch verformt. Im Walkbereich wird der Werkstoff zyklisch plastisch verformt mit einem verbleibenden Umforminkrement pro Zyklus. Das zyklisch plastische Werkstoffverhalten wird von der Verformungsamplitude, der Zyklenzahl, der Verformungsgeschwindigkeit und der Temperatur geprägt. Die Differenzen sowohl zum einsinnigen Werkstoffverhalten als auch bei verschiedenen Verformungsparametern sind in der unterschiedlich ausgeprägten Versetzungszell- und Subkorbildung begründet. Die Umformarbeit unter einsinniger Torsion steht in einem bestimmten Verhältnis zur Umformarbeit unter zyklischer Belastung. Dieses Verhältnis beschreibt der Bauschinger-Energieparameter. Er kann für die energetische Beschreibung zyklisch plastischer Verformungen verwendet werden.
2

Untersuchung des zyklisch plastischen Werkstoffverhaltens unter umformnahen Bedingungen

Hahn, Frank 20 May 2003 (has links)
Bei den Verfahren der partiellen Massivumformung, wie dem Bohrungsdrücken, erfährt der Werkstoff eine zyklische Plastifizierung. Dabei bedeutet „zyklisch“ einerseits, dass jedes Werkstoffsegment nur temporär im Umformeingriff ist und dass andererseits der Werkstoff alternierend plastifiziert wird. Inhalt der Arbeit ist die Beschreibung der Geometrie der Umformzone beim Bohrungsdrücken mit Hilfe der Computertomographie und die Untersuchung des zyklisch plastischen Werkstoffverhaltens mit verbleibendem Umforminkrement pro Umformzyklus an Hand von Torsionsuntersuchungen. Mit der Computertomographie ist es gelungen, eine Umformzone bei der partiellen Massivumformung zerstörungsfrei zu analysieren. Die Umformzone kann in zwei Verformungsbereiche aufgeteilt werden. Im Stempelbereich wird der Werkstoff unter einem hohen hydrostatischen Druckspannungsanteil einsinnig plastisch verformt. Im Walkbereich wird der Werkstoff zyklisch plastisch verformt mit einem verbleibenden Umforminkrement pro Zyklus. Das zyklisch plastische Werkstoffverhalten wird von der Verformungsamplitude, der Zyklenzahl, der Verformungsgeschwindigkeit und der Temperatur geprägt. Die Differenzen sowohl zum einsinnigen Werkstoffverhalten als auch bei verschiedenen Verformungsparametern sind in der unterschiedlich ausgeprägten Versetzungszell- und Subkorbildung begründet. Die Umformarbeit unter einsinniger Torsion steht in einem bestimmten Verhältnis zur Umformarbeit unter zyklischer Belastung. Dieses Verhältnis beschreibt der Bauschinger-Energieparameter. Er kann für die energetische Beschreibung zyklisch plastischer Verformungen verwendet werden.
3

Hochumgeformte Leichtmetallverbundwerkstoffe und deren festigkeitsbestimmende Faktoren

Marr, Tom 24 February 2014 (has links) (PDF)
Da in der Natur die Festigkeit der Stoffe bzw. Werkstoffe mit deren Massendichte korreliert [1], bieten sich dem Werkstoffingenieur zwei Möglichkeiten das genannte Ziel zu erreichen: Entweder er reduziert die effektive Dichte bereits sehr fester Werkstoffe durch konstruktive bzw. geometrische Optimierungen, oder es gelingt sehr leichte Werkstoffe mit deutlich gesteigerter Festigkeit herzustellen. Die erstgenannte Verfahrensweise stellt zu großen Teilen ein konstruktives bzw. fertigungstechnisches Problem dar. Von werkstoffwissenschaftlichem Interesse ist deshalb nur die zweite Möglichkeit. Dabei sollen sämtliche derzeit bekannte festigkeitssteigernde Faktoren und möglicherweise auch deren Synergien genutzt werden um einen hochfesten Leichtbauwerkstoff herzustellen. Dazu muss gleichzeitig ein neuartiges Hochumformverfahren für Leichtmetallverbundwerkstoffe erarbeitet werden, das diesen Anforderungen entspricht und eine dafür geeignete Werkstoffkombination gefunden werden. Konventionelle Verfahren zur Hochumformung erlauben häufig nur unter erheblichem Mehraufwand die Verarbeitung von Verbundwerkstoffen, weshalb die Hochumformung von Leichtmetallverbundwerkstoffen zur Festigkeitssteigerung in der Literatur praktisch keine Rolle spielt. Deshalb soll in dieser Arbeit das Umformverfahren Rundkneten zur Anwendung kommen, das die Hochumformung auch sehr heterogener Werkstoffe erlaubt. Darüber hinaus wird eine zusätzliche positive Wirkung auf die Festigkeit durch eingebaute Grenzflächen auf den Gesamtverbund erwartet. Wie sich im Laufe der Arbeit heraus stellte, eignet sich das verwendete Verfahren nicht ausschließlich zur Festigkeitssteigerung von Verbundwerkstoffen. Durch die sehr regelmäßige und fraktale Anordnung der Komponenten im Gesamtverbund ergaben sich auch einige Anknüpfungspunkte, die weit über die Eignung im Sinne eines Leichtbauwerkstoffes hinaus gehen. Aus diesem Grund liegt der Schwerpunkt der Arbeit zwar auf der mechanischen Charakterisierung der hergestellten Verbunde, in Kapitel 6 werden aber auch weitere Nutzungsmöglichkeiten diskutiert. Die gewählte Materialkombination Titan-Aluminium ist als Beispiel zu verstehen. Prinzipiell ist das vorgestellte Verfahren auf viele weitere Materialkombinationen anwendbar, solange grundlegende umformtechnische Regeln beachtet werden. [1] Ashby, M. F.: Materials Selection in Mechanical Design. Heidelberg: Spektrum Akademischer Verlag, 2006. 648 S.
4

Beitrag zur Modellierung und Simulation von Zylinderdrückwalzprozessen mit elementaren Methoden

Kleditzsch, Stefan 10 February 2014 (has links) (PDF)
Drückwalzen als inkrementelles Umformverfahren ist aufgrund seiner Verfahrenscharakteristik mit sehr hohen Rechenzeiten bei der Finite-Elemente-Methode (FEM) verbunden. Die Modelle ModIni und FloSim sind zwei analytisch-elementare Ansätze, um dieser Prämisse entgegenzuwirken. Das für ModIni entwickelte Geometriemodell wird in der vorliegenden Arbeit weiterentwickelt, so dass eine werkstoffunabhängige Berechnung der Staugeometrie ermöglicht wird und ein deutlich größeres Anwendungsspektrum der Methode bereitsteht. Die Simulationsmethode FloSim basiert auf dem oberen Schrankenverfahren und ermöglicht somit eine Berechnung von Zylinderdrückwalzprozessen innerhalb weniger Minuten. Für die Optimierung der Methode FloSim wurden in der vorliegenden Arbeit die analytischen Grundlagen für die Berechnung der Bauteillänge sowie der Umformzonentemperatur während des Prozesses erarbeitet. Weiterhin wurde auf Basis von numerisch realisierten Parameteranalysen ein Ansatz für die analytische Berechnung des Vergleichsumformgrades von Drückwalzprozessen entwickelt. Diese drei Ansätze, zu Bauteillänge, Temperatur und Umformgrad wurden in die Simulationssoftware FloSim integriert und führen zu einer deutlichen Genauigkeitssteigerung der Methode. / Flow Forming as incremental forming process is connected with extreme long computation times for Finite-Element-Analyses. ModIni and FloSim are two analytical/elementary models to antagonize this situation. The geometry model, which was developed for ModIni, is improved within the presented work. The improvement enables the material independent computation of the pile-up geometry and permits a wider application scope of ModIni. The simulation method FloSim is based on the upper bound method, which enables the computation of cylindrical Flow Forming processes within minutes. For the optimization of the method FloSim, the basics for the analytical computation of the workpiece length during the process and the computation of the forming zone temperature were developed within this work. Fur-thermore, an analytical approach for the computation of the equivalent plastic strain of cylindrical Flow Forming processes was developed based on numerical parameter analyses. This tree approaches for computing the workpiece length, the temperature and the equivalent plastic strain were integrated in FloSim and lead to an increased accuracy.
5

Hochumgeformte Leichtmetallverbundwerkstoffe und deren festigkeitsbestimmende Faktoren

Marr, Tom 29 January 2014 (has links)
Da in der Natur die Festigkeit der Stoffe bzw. Werkstoffe mit deren Massendichte korreliert [1], bieten sich dem Werkstoffingenieur zwei Möglichkeiten das genannte Ziel zu erreichen: Entweder er reduziert die effektive Dichte bereits sehr fester Werkstoffe durch konstruktive bzw. geometrische Optimierungen, oder es gelingt sehr leichte Werkstoffe mit deutlich gesteigerter Festigkeit herzustellen. Die erstgenannte Verfahrensweise stellt zu großen Teilen ein konstruktives bzw. fertigungstechnisches Problem dar. Von werkstoffwissenschaftlichem Interesse ist deshalb nur die zweite Möglichkeit. Dabei sollen sämtliche derzeit bekannte festigkeitssteigernde Faktoren und möglicherweise auch deren Synergien genutzt werden um einen hochfesten Leichtbauwerkstoff herzustellen. Dazu muss gleichzeitig ein neuartiges Hochumformverfahren für Leichtmetallverbundwerkstoffe erarbeitet werden, das diesen Anforderungen entspricht und eine dafür geeignete Werkstoffkombination gefunden werden. Konventionelle Verfahren zur Hochumformung erlauben häufig nur unter erheblichem Mehraufwand die Verarbeitung von Verbundwerkstoffen, weshalb die Hochumformung von Leichtmetallverbundwerkstoffen zur Festigkeitssteigerung in der Literatur praktisch keine Rolle spielt. Deshalb soll in dieser Arbeit das Umformverfahren Rundkneten zur Anwendung kommen, das die Hochumformung auch sehr heterogener Werkstoffe erlaubt. Darüber hinaus wird eine zusätzliche positive Wirkung auf die Festigkeit durch eingebaute Grenzflächen auf den Gesamtverbund erwartet. Wie sich im Laufe der Arbeit heraus stellte, eignet sich das verwendete Verfahren nicht ausschließlich zur Festigkeitssteigerung von Verbundwerkstoffen. Durch die sehr regelmäßige und fraktale Anordnung der Komponenten im Gesamtverbund ergaben sich auch einige Anknüpfungspunkte, die weit über die Eignung im Sinne eines Leichtbauwerkstoffes hinaus gehen. Aus diesem Grund liegt der Schwerpunkt der Arbeit zwar auf der mechanischen Charakterisierung der hergestellten Verbunde, in Kapitel 6 werden aber auch weitere Nutzungsmöglichkeiten diskutiert. Die gewählte Materialkombination Titan-Aluminium ist als Beispiel zu verstehen. Prinzipiell ist das vorgestellte Verfahren auf viele weitere Materialkombinationen anwendbar, solange grundlegende umformtechnische Regeln beachtet werden. [1] Ashby, M. F.: Materials Selection in Mechanical Design. Heidelberg: Spektrum Akademischer Verlag, 2006. 648 S.
6

Beitrag zur Modellierung und Simulation von Zylinderdrückwalzprozessen mit elementaren Methoden

Kleditzsch, Stefan 29 January 2014 (has links)
Drückwalzen als inkrementelles Umformverfahren ist aufgrund seiner Verfahrenscharakteristik mit sehr hohen Rechenzeiten bei der Finite-Elemente-Methode (FEM) verbunden. Die Modelle ModIni und FloSim sind zwei analytisch-elementare Ansätze, um dieser Prämisse entgegenzuwirken. Das für ModIni entwickelte Geometriemodell wird in der vorliegenden Arbeit weiterentwickelt, so dass eine werkstoffunabhängige Berechnung der Staugeometrie ermöglicht wird und ein deutlich größeres Anwendungsspektrum der Methode bereitsteht. Die Simulationsmethode FloSim basiert auf dem oberen Schrankenverfahren und ermöglicht somit eine Berechnung von Zylinderdrückwalzprozessen innerhalb weniger Minuten. Für die Optimierung der Methode FloSim wurden in der vorliegenden Arbeit die analytischen Grundlagen für die Berechnung der Bauteillänge sowie der Umformzonentemperatur während des Prozesses erarbeitet. Weiterhin wurde auf Basis von numerisch realisierten Parameteranalysen ein Ansatz für die analytische Berechnung des Vergleichsumformgrades von Drückwalzprozessen entwickelt. Diese drei Ansätze, zu Bauteillänge, Temperatur und Umformgrad wurden in die Simulationssoftware FloSim integriert und führen zu einer deutlichen Genauigkeitssteigerung der Methode. / Flow Forming as incremental forming process is connected with extreme long computation times for Finite-Element-Analyses. ModIni and FloSim are two analytical/elementary models to antagonize this situation. The geometry model, which was developed for ModIni, is improved within the presented work. The improvement enables the material independent computation of the pile-up geometry and permits a wider application scope of ModIni. The simulation method FloSim is based on the upper bound method, which enables the computation of cylindrical Flow Forming processes within minutes. For the optimization of the method FloSim, the basics for the analytical computation of the workpiece length during the process and the computation of the forming zone temperature were developed within this work. Fur-thermore, an analytical approach for the computation of the equivalent plastic strain of cylindrical Flow Forming processes was developed based on numerical parameter analyses. This tree approaches for computing the workpiece length, the temperature and the equivalent plastic strain were integrated in FloSim and lead to an increased accuracy.

Page generated in 0.1718 seconds