• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 65
  • 61
  • 14
  • 9
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 415
  • 415
  • 415
  • 106
  • 98
  • 88
  • 85
  • 83
  • 65
  • 64
  • 62
  • 58
  • 56
  • 55
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A new incompressible Navier-Stokes method with general hybrid meshes and its application to flow/structure interactions

Ahn, Hyung Taek 28 August 2008 (has links)
Not available / text
92

Isogeometric analysis of turbulence and fluid-structure interaction

Bazilevs, Jurijs 28 August 2008 (has links)
Not available / text
93

Numerical Modeling of Large-Displacement Fluid-Structure Interaction: Preliminary Study Aimed at Analysis of Heart Valve Dynamics

Williston, Kyle Alexander 17 August 2012 (has links)
The demand for artificial heart valve replacements is increasing as a result of birth defects, ageing and disease. Collaboration between engineers, biologists and mathematicians is necessary to handle problems related to biocompatibility and fluid dynamics. As a result of the increased demand for artificial heart valves, many new designs have been developed recently. A method to test those designs is to use mathematical modeling. This method has a relatively low-cost and can be used as a preliminary tool before expensive prototypes are created. This research analyzes the use of the numerical modeling software LS-DYNA for large-displacement fluid-structure interaction. It is a preliminary study aimed at the analysis of heart valve dynamics. In particular, a channel with flap model is created in LS-DYNA. The model's physics, convergence and ability to handle large deformations is investigated.
94

The Development and Evaluation of a Fully-coupled Monolithic Approach to Aero-structural Analysis and Optimization

McCormick, Neil 05 December 2013 (has links)
A monolithic approach to aero-structural analysis and optimization has been developed and implemented. In contrast to a partitioned approach which uses individual fluid and structural solvers to solve their respective systems separately, the monolithic approach solves a fully-coupled system simultaneously, enforcing solution compatibility across the sub-system interfaces at each iteration. In this work, a three-field formulation is used, consisting of fluid, structural, and fluid mesh-movement sub-systems. The performance of the monolithic approach is characterized using 1-D unsteady and 2-D steady analysis problems, and compared with a partitioned approach. Four steady model aero-structural optimization problems are also investigated. Gradients of the objective function are computed using the discrete-adjoint and flow-sensitivity (direct) methods. In each case, the monolithic approach is shown to be a promising option for efficient aero-structural analysis and optimization, though the implementation requires additional development of coupling sub-matrices when compared to a partitioned approach.
95

Wall shear patterns of a 50% asymmetric stenosis model using photochromic molecular flow visualization

Chin, David, 1982- January 2008 (has links)
Photochromic Molecular Flow Visualization is an in vitro, experimental technique that uses high speed image acquisition combined with an ultraviolet laser to capture instantaneous flow profiles. It is particularly adept at measuring near wall velocities which are necessary for accurate wall shear rate measurements. This thesis describes the implementation and validation of the technique at McGill. The system was used to investigate the wall shear rate patterns in an idealized 50% asymmetric stenosis model under steady flow for Reynolds numbers 206, 99 and 50. A large recirculation zone with flow reattachment was seen downstream of the stenosis with maximum shear values occurring slightly upstream of peak stenosis for Reynolds number 206. This information is vital to ongoing dynamic cell culture experiments aimed at understanding the progression of atherosclerosis.
96

A study of coronary flow in the presence of geometric and mechanical abnormalities in a fluid-structure interaction model of the aortic valve /

Campbell, Ian, 1982- January 2007 (has links)
Various surgical options exist to correct pathologies of the aortic valve, including mechanical or biological valve implantation, reconstruction of the native vessels, and a combination of the two. Additionally, finite-element analysis and, to some extent, fluid-structure interaction (FSI) analyses have been used in the past to analyze how these procedures may affect various engineering metrics such as tissue stresses and opening and closing dynamics of the valves. In this work, a similar type of model and analysis is performed, however, in addition to modeling the actions of the aortic valve, coronary flows are also considered. By incorporating these vessels, it is possible to examine coronary flow perturbations to mechanical and geometric model variations and to assess certain surgical procedures in regards to a new clinically relevant metric.
97

Three-dimensional computational modeling of fluid-structure interaction : study of diastolic function in a thin-walled left heart model

Lemmon, Jack David, Jr. 05 1900 (has links)
No description available.
98

Simulation of Myocardium Motion and Blood Flow in the Heart with Fluid-Structure Interaction

Doyle, Matthew Gerard 22 August 2011 (has links)
The heart is a complex organ and much is still unknown about its mechanical function. In order to use simulations to study heart mechanics, fluid and solid components and their interaction should be incorporated into any numerical model. Many previous studies have focused on myocardium motion or blood flow separately, while neglecting their interaction. Previous fluid-structure interaction (FSI) simulations of heart mechanics have made simplifying assumptions about their solid models, which prevented them from accurately predicting the stress-stain behaviour of the myocardium. In this work, a numerical model of the canine left ventricle (LV) is presented, which serves to address the limitations of previous studies. A canine LV myocardium material model was developed for use in conjunction with a commercial finite element code. The material model was modified from its original form to make it suitable for use in simulations. Further, numerical constraints were imposed when calculating the material parameter values, to ensure that the model would be strictly convex. An initial geometry and non-zero stress state are required to start cardiac cycle simulations. These were generated by the static inflation of a passive LV model to an end-diastolic pressure. Comparisons with previous measurements verified that the calculated geometry was representative of end diastole. Stresses calculated at the specified end diastolic pressure showed complex spatial variations, illustrating the superiority of the present approach over a specification of an arbitrary stress distribution to an end-diastolic geometry. In the third part of this study, FSI simulations of the mechanics of the LV were performed over the cardiac cycle. Calculated LV cavity pressures agreed well with previous measurements during most of the cardiac cycle, but deviated from them during rapid filling, which resulted in non-physiological backflow. This study is the first one to present a detailed analysis of the temporal and spatial variations of the properties of both the solid and the fluid components of the canine LV. The observed development of non-uniform pressure distributions in the LV cavity confirms the advantage of performing FSI simulations rather than imposing a uniform fluid pressure on the inner surface of the myocardium during solid-only simulations.
99

Developing Methods For Designing Shape Memory Alloy Actuated Morphing Aerostructures

Oehler, Stephen Daniel 2012 August 1900 (has links)
The past twenty years have seen the successful characterization and computational modeling efforts by the smart materials community to better understand the Shape Memory Alloy (SMA). Commercially available numerical analysis tools, coupled with powerful constitutive models, have been shown to be highly accurate for predicting the response of these materials when subjected to predetermined loading conditions. This thesis acknowledges the development of such an established analysis framework and proposes an expanded design framework that is capable of accounting for the complex coupling behavior between SMA components and the surrounding assembly or system. In order to capture these effects, additional analysis tools are implemented in addition to the standard use of the non-linear finite element analysis (FEA) solver and a full, robust SMA constitutive model coded as a custom user-defined material subroutine (UMAT). These additional tools include a computational fluid dynamics (CFD) solver, a cosimulation module that allows separate FEA and CFD solvers to iteratively analyze fluid-structure interaction (FSI) and conjugate heat transfer (CHT) problems, and the addition of the latent heat term to the heat equations in the UMAT to fully account for transient thermomechanical coupling. Procedures for optimizing SMA component and assembly designs through iterative analysis are also introduced at the highest level. These techniques are implemented using commercially available simulation process management and scripting tools. The expanded framework is demonstrated on example engineering problems that are motivated by real morphing structure applications, namely the Boeing Variable Geometry Chevron (VGC) and the NASA Shape Memory Alloy Hybrid Composite (SMAHC) chevron. Three different studies are conducted on these applications, focusing on component-, assembly-, and system-level analysis, each of which may necessitate accounting for certain coupling interactions between thermal, mechanical, and fluid fields. Output analysis data from each of the three models are validated against experimental data, where available. It is shown that the expanded design framework can account for the additional coupling effects at each analysis level, while providing an efficient and accurate alternative to the cost- and time-expensive legacy design-build-test methods that are still used today to engineer SMA actuated morphing aerostructures.
100

Structural and acoustic responses of a submerged vessel

Caresta, Mauro, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Excitation of the low frequency vibrational modes of a submerged vessel can generate significant radiated noise levels. Vibrational modes of a submarine hull are excited from the transmission of fluctuating forces through the shaft and thrust bearings due to the propeller rotating in an unsteady fluid. The focus of this work is to investigate the structural and acoustic responses of a submarine hull under axial excitation. The submarine hull is modelled as a cylindrical shell with internal bulkheads and ring stiffeners. The cylindrical shell is closed by truncated conical shells, which in turn are closed at each end using circular plates. The entire structure is submerged in a heavy fluid medium. The structural responses of the submerged vessel are calculated by solving the cylindrical shell equations of motion using a wave approach and the conical shell equations with a power series solution. The displacement normal to the surface of the structure in contact with the fluid medium was calculated by assembling the boundary/continuity matrix. The far field radiated sound pressure was then calculated by means of the Helmholtz integral. Results from the analytical model are compared with computational results from a fully coupled finite element/boundary element model. The individual and combined effects of the various influencing factors, corresponding to the ring stiffeners, bulkheads, conical end closures and fluid loading, on the structural and acoustic responses are characterised by examining the contribution by the circumferential modes. It is shown that equally spaced internal bulkheads generate a periodic structure thus creating a grouping effect for the higher circumferential modes, but do not have strong influence on the sound radiation. Stiffeners are found to have an important effect on both the dynamic and acoustic responses of the hull. The contribution of the conical end closures on the radiated sound pressure for the lowest circumferential mode numbers is also clearly observed. This work shows the importance of the bending modes when evaluating the sound pressure radiated by a submarine under harmonic excitation from the propulsion system.

Page generated in 0.1031 seconds