• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 190
  • 175
  • 30
  • 18
  • 16
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 494
  • 414
  • 143
  • 120
  • 96
  • 77
  • 65
  • 56
  • 49
  • 47
  • 47
  • 47
  • 46
  • 44
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

In-Plant Testing of the Hydrofloat Separator for Coarse Phospahte Recovery

Barbee, Christopher John 07 February 2008 (has links)
The HydroFloat technology was specifically developed to upgrade phosphate sands that are too coarse to be efficiently recovered by conventional flotation methods. In this novel process, classified feed is suspended in a fluidized-bed and then aerated. The reagentized phosphate particles become buoyant and report to the product launder after encountering and attaching to the rising air bubbles. Simultaneously, the hydrophilic particles are rejected as a high solids content (65-70%) underflow. The fluidized bed acts as a "resistant" layer through which no bubble/particle aggregates can penetrate. As a result, the HydroFloat also acts as a density separator that is capable of treating much coarser particles as compared to traditional flotation processes. In addition, the high solids content of the teeter bed promotes bubble-particle attachment and reduces the cell volume required to achieve a given capacity. To fully evaluate the potential advantages of the HydroFloat technology, a 5-tph test circuit was installed and evaluated in an industrial phosphate beneficiation plant. Feed to the test circuit was continuously classified, conditioned and upgraded using the HydroFloat technology. The test results indicated that the HydroFloat could produce a high-grade phosphate product in a single stage of separation. Product quality ranged between 70-72% BPL (bone phosphate of lime = 2.185 x %P2O5) and 5-10% insols (acid insoluble solids). BPL recoveries exceeded 98% at feed rates greater than 2.0 tph per ft^2 of separator cross-sectional area. These results were superior to traditional column flotation, which recovered less than 90% of the valuable product at a capacity of less than 1 tph per ft^2. / Master of Science
82

Biological Fluidized Bed Denitrification of Wastewater

Stephenson, Joseph P. 03 1900 (has links)
<p> A half-order kinetic model (8-48 mg NO3+NO2-N/l), coupled with a temperature dependency described by the Arrhenius relationship (4°-27° C), adequately described biological denitrification of municipal wastewater in a pilot scale fluidized bed reactor. Biofilm support media (activated carbon or sand) and hydraulic flux (0.25-1.7 m^3/m^2·min) were not found to be significant factors in controlling denitrification rate within the reactor. Control of biofilm thickness on the support media was essential for satisfactory operation of the process; excess thickness contributed to elutriation of media and attached biofilm. Under similar influent wastewater conditions, the fluidized bed process was capable of equivalent NO3+NO2-N removal in about one-tenth of the time necessary in a suspended growth or a rotating biological contactor (RBC) process. Temperature dependency of the NO3+NO2-N removal rate appeared to be less than the dependency in a suspended growth or a RBC process, but similar to the dependency observed in a packed column.</p> / Thesis / Master of Engineering (MEngr)
83

The Adsorption of Bioresidual Organics in a Fluidized Bed Biological Reactor

Tsezos, Marios January 1978 (has links)
<p> The adsorption of residual organic molecules generated during the metabolic activity of bacteria was investigated. </p> <p> At first a number of potential adsorbants and ion exchange resins were selected with different average pore diameters and specific surface areas. </p> <p> The adsorption (removal) capacity of these materials was evaluated through the determination of their adsorption isotherms on a residual organics solution, obtained from an activated sludge reactor, that operated with Phenol as a substrate. </p> <p> On the basis of these isotherms Filtrasorb 400, an activated Carbon with 3SA0 average pore diameter and 1200 m2/g specific surface area, was selected as the best adsorbant. Subsequently a fluidized bed biological reactor was used to study the direct adsorption of the residual organics produced by the biofilms on the Filtrasorb 400 particles supporting the growth. A phenol solution was fed to the reactor and different Oxygen to Phenol ratios were applied. </p> <p> The adsorption of the residual organic molecules generated by the biological growth in a fluidized bed biological reactor proved feasible and independent of the Oxygen to Phenol ratio applied. The Phenol removal efficiency of the reactor was determined by the Oxygen supplied. The removal reached 100% whenever residual Oxygen was present in the effluent of the reactor (no Oxygen limitation). </p> <p> Specific reaction rates higher than the ones reported in the literature were observed. </p> <p> The removal of the residual organics resulted in a stable effluent pH. </p> <p>The monitoring of the height of the expanded bed that biological growth is a parameter that can be used to monitor the total volume of biological films in the reactor. A volume yield factor can also be calculated. </p> / Thesis / Master of Engineering (MEngr)
84

ANAEROBIC/AEROBIC BIODEGRADATION OF PENTACHLOROPHENOL USING GAC FLUIDIZED BED BIOREACTORS: OPTIMIZATION OF THE EMPTY BED CONTACT TIME

WILSON, GREGORY 22 May 2002 (has links)
No description available.
85

A fluidized bed reactor for microencapsulated urease /

Arbeloa, Marguerite January 1983 (has links)
No description available.
86

Polypropylene Production Optimization in Fluidized Bed Catalytic Reactor (FBCR): Statistical Modeling and Pilot Scale Experimental Validation

Khan, M.J.H., Hussain, M.A., Mujtaba, Iqbal M. 13 March 2014 (has links)
Yes / Polypropylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75 °C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR).
87

Numerical Simulations of Thermo-Fluid Phenomena in Microwave Heated Packed and Fluidized Beds

Savransky, Max 02 December 2003 (has links)
Microwave heating is implemented in various fields such as drying, material processing, and chemical reactors. Microwaves offer several advantages over conventional heating methods: 1) microwaves deposit heat directly in the material without convection or radiation, 2) microwave heating is easy and efficient to implement, and 3) microwave processes can be controlled.In order to understand how to use microwaves more efficiently, we must understand how they affect the material with which they interact.This requires the ability to predict the temperature distribution that is achieved within the material.In recent years packed and fluidized beds have been used as chemical reactors to achieve various tasks in industry.Recent studies have shown that microwave heating offers the potential to heat the bed particles to a higher temperature than that of the fluid.This results in enhanced reaction rates and improves the overall efficiency of the reactor.T he focus of this work is to determine the temperature distributions within the packed and fluidized beds, and to determine whether the catalyst particles can be heated to a higher temperature than the gas in catalytic reactions. The beds are modeled with multiphase flow equations.The gas velocity profiles along with the solid and gas temperature profiles for packed and fluidized beds are provided. F or the fluidized beds, the hydrodynamics is modeled using FLUENT and the solid velocity profiles are also determined. / Ph. D.
88

Cold model of a vibrated-bed microreactor capable of varying Peclet number at fixed weight hourly space velocity providing a tool for simulating an important feature of the reaction kinetic scene in large catalytic fluid beds

Benge, G. Gregory 08 August 2007 (has links)
A cold-flow model of a vibrated-bed microreactor has been designed and tested with capability for varying the level of gas dispersion (characterized by axial Peclet number) at a fixed weight hourly space velocity (WHSV). A tool has thus been provided whereby an important feature (viz., gas dispersion) of the reaction kinetic scene in large catalytic fluid beds can be simulated on a microscale, using approximately 5 grams of catalyst. Realization of a hot design of the microreactor (a task for another student) should permit the industrial chemist or chemical engineer, working at laboratory bench scale, quickly and inexpensively, to determine the sensitivity of a cataly1ic reaction to fluid-bed gas dispersion. The new microreactor exploits the coherent-expanded (C-E) vibrated-bed state, and is perhaps the first technical use of this state. The C-E state is achieved by subjecting a shallow layer of a fine powder to vertical sinusoidal vibration. The microreactor comprises a rectangular horizontal duct, 12.7 mm in height, 25.4 mm in width, variable in length, and with nonporous floor and walls. The microreactor is charged with a powder, such as fluid cataly1ic cracking (FCC) catalyst, at a compacted depth of I mm, and is vibrated at ~15 Hertz and amplitude of ~3 mm. Under influence of this vibration, the powder expands, displaying the C-E state. Between a phase angle of ~50° and an angle of ~150°, the powder assumes a depth of ~4 mm (i.e., expanded 4-fold from its compacted depth). Later, in each vibration cycle, the powder expands further. At ~300° phase angle, the powder reaches ~12.7 mm (i.e., collides with the roof of the microreactor duct). / Ph. D.
89

A Computational Study of the Hydrodynamics of Gas-Solid Fluidized Beds

Teaters, Lindsey Claire 25 June 2012 (has links)
Computational fluid dynamics (CFD) modeling was used to predict the gas-solid hydrodynamics of fluidized beds. An Eulerian-Eulerian multi-fluid model and granular kinetic theory were used to simulate fluidization and to capture the complex physics associated therewith. The commercial code ANSYS FLUENT was used to study two-dimensional single solids phase glass bead and walnut shell fluidized beds. Current modeling codes only allow for modeling of spherical, uniform-density particles. Owing to the fact that biomass material, such as walnut shell, is abnormally shaped and has non-uniform density, a study was conducted to find the best modeling approach to accurately predict pressure drop, minimum fluidization velocity, and void fraction in the bed. Furthermore, experiments have revealed that all of the bed mass does not completely fluidize due to agglomeration of material between jets in the distributor plate. It was shown that the best modeling approach to capture the physics of the biomass bed was by correcting the amount of mass present in the bed in order to match how much material truly fluidizes experimentally, whereby the initial bed height of the system is altered. The approach was referred to as the SIM approach. A flow regime identification study was also performed on a glass bead fluidized bed to show the distinction between bubbling, slugging, and turbulent flow regimes by examining void fraction contours and bubble dynamics, as well as by comparison of simulated data with an established trend of standard deviation of pressure versus inlet gas velocity. Modeling was carried out with and without turbulence modeling (k-ϵ), to show the effect of turbulence modeling on two-dimensional simulations. / Master of Science
90

Desenvolvimento de grânulos de carbamazepina por \'hot melt granulation\' em leito fluidizado / Development of the carbamazepine granules by \"fluidized bed hot melt granulation.

Kfuri, Camila Razuk 17 September 2008 (has links)
Os fármacos pertencentes às classes II e IV do sistema de classificação biofarmacêutica são aqueles sujeitos a problemas relacionados com a sua biodisponibilidade. Um dos procedimentos utilizados para melhorar a solubilidade de fármacos pouco solúveis é a granulação com materiais lipídicos ou cerosos. Para aumentar a solubilidade da carbamazepina, fármaco de classe II, ou seja, que apresenta baixa solubilidade e alta permeabilidade, inicialmente esta foi associada com os excipientes Gelucire® 50/13 ou Polietilenoglicol 6000, através de uma mistura física ou dispersão sólida. Estas associações foram submetidas a procedimentos analíticos como DSC, Infravermelho, Difração de Raios-X e teste de solubilidade em água. Nas misturas físicas a carbamazepina permaneceu estável, porém nas dispersões sólidas houve o aparecimento de polimorfismo. No entanto estes polimorfos também apresentam atividade terapêutica. As misturas físicas e as dispersões sólidas foram submetidas ao teste de solubilidade e as amostras que continham Gelucire® 50/13 aumentaram em torno de 15 vezes a solubilidade da carbamazepina em água, enquanto que as amostras que continham Polietilenoglicol 6000 aumentaram em torno de 14 vezes. Optou-se pela utilização do PEG 6000 devido à melhor compatibilidade deste com o equipamento utilizado. A granulação por Hot Melt em leito fluidizado foi realizada após alguns ensaios de fluidodinâmica utilizando a lactose spray dried como substrato. Durante os experimentos as condições do processo permaneceram estáveis e a curva característica foi típica de leito fluidizado. Os granulados foram obtidos utilizando o planejamento fatorial Box Behnken cujos fatores estudados foram: vazão de dispersão sólida, quantidade de dispersão sólida e pressão de atomização e em seguida caracterizados e avaliados. A maioria das propriedades físicas e farmacotécnicas dos granulados foi dependente da quantidade de dispersão sólida. A utilização do método de granulação por fusão em leito fluidizado melhorou o perfil de dissolução das cápsulas contendo os granulados, sendo que com o maior nível da quantidade de dispersão sólida houve um aumento significante na quantidade de carbamazepina liberada. Os resultados mostram que esta técnica é relevante para preparar dispersões sólidas com fármacos que apresentam baixa biodisponibilidade devido a sua baixa solubilidade. / Drugs belonging to classes II and IV in the biopharmaceutical classification system are those having bioavailability problems. Granulation with waxy lipids is one of the procedures used to improve the solubility of poorly soluble drugs. To increase the solubility of carbamazepine a drug of class II that has low solubility but high permeability, its association with the excipients Gelucire® 50/13 or Polyethylene 6000, was done by physical mixtures or solid dispersions. The associations were subjected to analytical procedures such as Differential Scanning Calorimetry (DSC), infrared light, X-ray diffraction and tests of solubility in water. In physical mixtures carbamazepine remained stable, but showed different polymorphic forms in solid dispersions. However, the polymorphic forms were also therapeutically active.Solubility tests of physical mixtures and solid dispersions indicated that samples containing Gelucire ® 50 / 13 increased the solubility of carbamazepine in water about 15 times, while the ones containing Polyethylene glycol 6000 had an increase of about 14 times. PEG 6000 was the chosen carrier due to its better compatibility with the equipment used.Fluid dynamic tests using spray dried lactose as a substrate were preliminary to the granulation experiments in the fluidised bed. The process conditions remained stable during the experiments and the characteristic curve tracing was typical of fluidised beds. Granules were obtained in experiments that followed a Box Behnken factorial design, where the factors studied were: flow rate of the solid dispersion, amount of solid dispersion and atomization pressure .Most physical and technical granule properties were dependent on the quantity of solid dispersion. The method of granulation by hot melt in a fluidised bed improved the solubility profile of carbamazepine in granule containing capsules.Granules containing the highest amount of solid dispersion showed a significant increase in the amount of carbamazepine released. The results proved that this technique is relevant to the preparation of solid dispersions with low bioavailable drugs due to their poor solubility.

Page generated in 0.0391 seconds