• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelación térmica del suelo alrededor de tubos enterrados en sistemas de colección de energía geotérmica de baja entalpía

Zenteno Arenas, Alonso Gonzalo January 2013 (has links)
Ingeniero Civil Mecánico / Los sistemas de climatización con energía geotérmica, aprovechan la estabilidad de temperatura que tiene el subsuelo para extraer calor de la vivienda y transferirlo al suelo, o de forma inversa, extraer calor del suelo y transferirlo a la vivienda (depende si se trata de invierno o verano). Para realizar esto se usan tubos enterrados en que se hace circular un fluido interiormente para transportar el calor. En la literatura se proponen métodos incompletos para calcular la capacidad de transferencia entre los tubos enterrados y el suelo, ya que no se considera la modificación de temperatura del suelo alrededor de los tubos enterrados. En este trabajo, usando simulaciones numéricas, se resuelve el campo de temperaturas alrededor de los tubos en función del tiempo y se determina la resistencia térmica del suelo. Usando los resultados de estas simulaciones, se propone una fórmula (en función de las variables relevantes) para estimar de forma sencilla el promedio de capacidad de transferencia que tendrá un tubo. Se realizan simulaciones con 2 y 3 tubos paralelos, para evaluar la disminución de la capacidad de transferir calor debido a la interferencia térmica que se produce entre tubos cercanos. Estos resultados muestran que el espaciado, es un factor importante a la hora de diseñar un circuito de tubos enterrados, ya que con arreglos muy compactos se disminuye en más un 50% la capacidad de captar calor. Con los resultados de las simulaciones se evalúan cuatro casos, para determinar cuán importante es agregar la resistencia térmica del suelo, a las conocidas y bien estudiadas resistencias térmicas de la pared del tubo y del fluido interno. De forma general, el suelo restringe el flujo de calor (más que la pared y el fluido interno) y se vuelve el elemento clave para determinar la capacidad de transferencia. Cuantificar este fenómeno, permite diseñar sistemas de colección, tomando en cuenta la resistencia térmica del suelo y determinar correctamente la capacidad de transferir calor. Así, se puede generar una solución acorde a la demanda térmica requerida.
2

Producción de calor radiogénico y flujo de calor en las rocas del basamento de la cuenca de Talca

Morales Molina, Cristián Andrés January 2014 (has links)
Geólogo / En este trabajo se presenta una estimación del ujo de calor HF (por sus siglas en inglés Heat Flow) para la cuenca de Talca (35° 25' 59'' S, 71° 40' 0'' W) , a partir de la medición de la producción de calor radiogénico RHP (por sus siglas en inglés Radiogenic Heat Production) de las rocas perteneciente a la corteza superior, esencialmente a oramientos mesozoicos y cenozoicos. Considera por parte de la literatura, el RHP del resto de la corteza y el manto litosférico, así como el flujo de calor derivado por la diferencia de temperatura entre la base de la litósfera y la super cie. Se estimó el RHP de las rocas de la corteza superior en base a la concentración de U, Th y K en ellas mediante un espectrómetro/escintilómetro portátil de rayos gamma, los datos para el resto de la litósfera y las propiedades físicas de las rocas fueron obtenidas de la literatura. Para la estimación del HF se utilizo modelación de elementos nitos sobre un per l estructural de la cuenca, en el cual se incluyen las propiedades físicas, RHP y temperaturas bordes de la litósfera. El programa utilizado para la modelación fue el software COMSOL Multiphysics (versión 4.3a). El RHP de las formaciones de la corteza superior varía desde 0,4 µ W/m^3 a 2,8 µW/m^3, teniendo como media una producción de calor radiogénico de 1,3 µ W/m^3 . El HF estimado por el modelo para la cuenca de Talca es de entre 62-65 mW/m^2 de los cuales 15 mW/m^2 son producidos en la corteza superior siendo un 23% del fl ujo de calor que llega a la super cie. El gradiente térmico estimado bajo Talca corresponde a 23 °C/km.
3

Contribución de la conductividad térmica y la producción de calor radiogénico a la estructura termal de la corteza superior en la latitud de Santiago, Chile

Valdenegro Cid, Pablo Esteban January 2015 (has links)
Geólogo / Contribución de la conductividad térmica y la producción de calor radiogénico a la estructura termal de la corteza superior en la latitud de Santiago, Chile La conductividad térmica y la producción de calor radiogénico (RHP, por sus siglas del inglés Radiogenic Heat Production), son dos propiedades termales intrínsecas a un volumen de roca. Estas propiedades influyen directamente en la estructura termal de la corteza, pues determinan la conducción de calor y, a la vez, lo producen. La conductividad térmica y RHP dependen de la composición química de las rocas y de sus características petrográficas. Además, las variaciones de presión y temperatura relacionadas a la profundidad, afectan las propiedades termales, principalmente por el aumento de la temperatura. El estudio y modelamiento de la estructura termal de la litósfera representan un gran desafío, considerando la resolución numérica del problema y las condiciones iniciales y de borde. Se entregan aquí los valores obtenidos para la conductividad térmica y RHP, correspondientes a las propiedades termales más influyentes en la estructura termal de la corteza superior. Las rocas de la corteza superior en la latitud de Santiago están compuestas por unidades de la Cordillera de la Costa, que corresponden a rocas estratificadas de origen volcánico y sedimentario del Jurásico y Cretácico, además de rocas intrusivas paleozoicas, jurásicas y cretácicas, y por unidades de la Cordillera Principal de Los Andes, correspondientes a rocas estratificadas de origen volcánico del Oligoceno al Mioceno e intrusivos de la misma edad. El objetivo principal de este trabajo es investigar las propiedades termales de las unidades geológicas de la corteza superior en la latitud de Santiago, y su relación con la litología y edad. Esto se llevó a cabo realizando nuevas mediciones de las propiedades termales y ajustando los datos a distribuciones estadísticas, con un alto nivel de confiabilidad. La conductividad térmica se midió utilizando una sonda mediante el método de fuente de calor lineal, mientras que el cálculo de RHP se realizó a partir de las concentraciones medidas de U, Th y K, (RHPe, del inglés Radiogenic Heat Production elements). Para la conductividad térmica, el mayor valor promedio se registró en la Formación Lo Prado, cuya magnitud es 2,91[W/m*K], mientras que el mínimo se obtuvo en la Formación del Cordón Los Ratones, con 1,60 [W/m*K]. El máximo medido se registró en la Formación Lo Prado, con un valor de 4,92 [W/m*K]. Por otra parte, para la producción de calor radiogénico, el valor promedio más alto se obtuvo en la Formación Veta Negra, con 1,6 [𝜇W/m3], mientras que el mínimo se obtuvo para la Formación Lo Valle, con un valor de 0,59 [𝜇W/m3].El valor máximo medido se registró en la Formación Lo Prado, con una magnitud de 3,48 [𝜇W/m3]. Conductividad térmica y RHP dependen principalmente de la litología de las formaciones, siendo otros factores como edad, tamaño de grano, etc., menos o totalmente no influyentes. La estimación de flujo calórico para la zona de estudio está entre 45 a 60 [mW/m2], y el potencial de la cuenca de Santiago se asocia a la geotermia de muy baja entalpía.
4

Producción de calor radiogénico y flujo calórico en la cuenca de Santiago, Región Metropolitana, Chile

Poblete Anderson, Nicolás Andrés January 2014 (has links)
Geólogo / El objetivo de este trabajo fue estimar la influencia de la producción de calor radiogénico (RHP por sus siglas del inglés Radiogenic Heat Production), en el flujo calórico total que llega a la base del relleno sedimentario de la cuenca de Santiago. La cuenca de Santiago corresponde a una depresión irregular, ubicada entre los 33-33.9°S y 70.5-71°W. Sus límites son: hacia el norte el cordón de cerros de los Altos de Polpaico y los Cerros de Colina, hacia al oeste la Cordillera de la Costa, hacia el este la Cordillera de Los Andes y hacia el sur la Angostura de Paine. La RHP se estimó en base a la concentración de elementos productores de calor radiogénico (RHPe: U, Th y K; por sus siglas del inglés Radiogenic Heat Production elements), de las diferentes litologías que componen el basamento de la cuenca de Santiago. Los RHPe, fueron medidos en numerosos afloramientos de rocas mesozoicas y cenozoicas, que rodean a la cuenca de Santiago, con lo que se logró determinar la concentración de RHPe en las litologías que componen la corteza superior. Las concentraciones de RHPe de las capas inferiores de la corteza y manto litosférico fueron obtenidas de la literatura. Las RHP promedio que componen la corteza superior, variaron entre 0,33 y 2,17 uW/m3, con un promedio de 1,3 uW/m3. Los componentes que se necesitaron para estimar el flujo calórico fueron: estructura de la litósfera, propiedades físicas y termales de las unidades que la componen, entre ellas la RHP. La estimación del flujo calórico se realizó en base a una modelación de transferencia de calor en sólidos, ocupando elementos finitos, en el software COMSOL Multiphysics (versión 4.3). El flujo calórico que llega a la base del relleno sedimentario de la cuenca de Santiago fue estimado en 61-67 mW/m2. El aporte de la RHP de toda la litósfera, en el flujo calórico que llega la superficie, estuvo entre 28,5 a 30 mW/m2, constituyendo un 45-48% del total, mientras que aporte del RHP de la corteza superior fue 12 mW/m2, constituyendo un 18% del flujo calórico total que alcanza la superficie. El relieve afectó de la siguiente manera al flujo calórico: en altos topográficos, porque el calor se distribuye en un área mayor, se produce una disminución del flujo calórico que llega a la superficie, en cambio en bajos topográficos sucede todo lo contrario, es decir, disminuye el área y aumenta el flujo calórico que llega a la superficie. Finalmente, el gradiente geotermal, en las rocas cercanas a la superficie de Santiago, fue estimado en 24°C/km. Esto implica que las temperaturas necesarias para algún uso geotérmico de muy baja entalpía se encontraron alrededor de los 200 m de profundidad; y para uso de geotermia de alta entalpía, la profundidad requerida es alrededor de 6 km.

Page generated in 0.0937 seconds